CeFe nanofibrous carbon nanozyme integrated with smartphone for the point-of-care testing of norfloxacin in water.

Journal of pharmaceutical analysis Pub Date : 2024-10-01 Epub Date: 2024-06-26 DOI:10.1016/j.jpha.2024.101023
Yue Liu, Taimei Cai, Sen Chen, Tao Wen, Hailong Peng
{"title":"CeFe nanofibrous carbon nanozyme integrated with smartphone for the point-of-care testing of norfloxacin in water.","authors":"Yue Liu, Taimei Cai, Sen Chen, Tao Wen, Hailong Peng","doi":"10.1016/j.jpha.2024.101023","DOIUrl":null,"url":null,"abstract":"<p><p>The overuse of antibiotics has led to the severe contamination of water bodies, posing a considerable hazard to human health. Therefore, the development of an accurate and rapid point-of-care testing (POCT) platform for the quantitative detection of antibiotics is necessary. In this study, Cerium oxide (CeO<sub>2</sub>) and Ferrosoferric oxide (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme (CeFe-NCMzyme) with a porous structure, high surface area, and N-doped carbon material properties, leading to a considerable enhancement of the peroxidase (POD)-like activity compared with that of the CeO<sub>2</sub> or Fe<sub>3</sub>O<sub>4</sub> nanoparticles alone. The POD-like activity of CeFe-NCMzyme can be quenched using L-Cysteine (Cys) and subsequently restored by the addition of a quinolone antibiotic (norfloxacin, NOR). Therefore, CeFe-NCMzyme was used as a colorimetric sensor to detect NOR via an \"On-Off\" model of POD-like activity. The sensor possessed a wide linear range of 0.05-20.0 μM (<i>R</i> <sup>2</sup> = 0.9910) with a detection limit of 35.70 nM. Furthermore, a smartphone-assisted POCT platform with CeFe-NCMzyme was fabricated for quantitative detection of NOR based on RGB analysis. With the use of the POCT platform, a linear range of 0.1-20.0 μM and a detection limit of 54.10 nM were obtained. The spiked recoveries in the water samples were ranged from 97.73% to 102.01%, and the sensor exhibited good accuracy and acceptable reliability. This study provides a portable POCT platform for the on-site and quantitative monitoring of quinolone antibiotics in real samples, particularly in resource-constrained settings.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"14 10","pages":"101023"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2024.101023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The overuse of antibiotics has led to the severe contamination of water bodies, posing a considerable hazard to human health. Therefore, the development of an accurate and rapid point-of-care testing (POCT) platform for the quantitative detection of antibiotics is necessary. In this study, Cerium oxide (CeO2) and Ferrosoferric oxide (Fe3O4) nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme (CeFe-NCMzyme) with a porous structure, high surface area, and N-doped carbon material properties, leading to a considerable enhancement of the peroxidase (POD)-like activity compared with that of the CeO2 or Fe3O4 nanoparticles alone. The POD-like activity of CeFe-NCMzyme can be quenched using L-Cysteine (Cys) and subsequently restored by the addition of a quinolone antibiotic (norfloxacin, NOR). Therefore, CeFe-NCMzyme was used as a colorimetric sensor to detect NOR via an "On-Off" model of POD-like activity. The sensor possessed a wide linear range of 0.05-20.0 μM (R 2 = 0.9910) with a detection limit of 35.70 nM. Furthermore, a smartphone-assisted POCT platform with CeFe-NCMzyme was fabricated for quantitative detection of NOR based on RGB analysis. With the use of the POCT platform, a linear range of 0.1-20.0 μM and a detection limit of 54.10 nM were obtained. The spiked recoveries in the water samples were ranged from 97.73% to 102.01%, and the sensor exhibited good accuracy and acceptable reliability. This study provides a portable POCT platform for the on-site and quantitative monitoring of quinolone antibiotics in real samples, particularly in resource-constrained settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Sodium Acetate Anhydrous
麦克林
Doxycycline Hydrochloride
麦克林
Erythromycin
麦克林
Norfloxacin
麦克林
L-Cysteine (Cys)
麦克林
3,3′,5,5′-tetramethylbenzidine (TMB)
阿拉丁
Tween 85
阿拉丁
Span 85
阿拉丁
Fe3O4 nanoparticles
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the potential protective role of anthocyanins in mitigating micro/nanoplastic-induced reproductive toxicity: A steroid receptor perspective. Permeable polydimethylsiloxane microneedles for the delivery of traditional Chinese medicine elemene. An economical and flexible chip using surface-enhanced infrared absorption spectroscopy for pharmaceutical detection: Combining qualitative analysis and quantitative detection. Exosomal circRNAs: Deciphering the novel drug resistance roles in cancer therapy. Natural product virtual-interact-phenotypic target characterization: A novel approach demonstrated with Salvia miltiorrhiza extract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1