{"title":"Leveraging Structural and Computational Biology for Molecular Glue Discovery","authors":"Congbao Kang, Weijun Xu","doi":"10.1021/acs.jmedchem.5c00076","DOIUrl":null,"url":null,"abstract":"The discovery of molecular glues has made significant strides, unlocking new avenues for targeted protein degradation as a therapeutic strategy, thereby expanding the scope of drug discovery into territories previously considered undruggable. Pioneering molecules like thalidomide and its derivatives have paved the way for the development of small molecules that can induce specific protein degradation by hijacking the cellular ubiquitin–proteasome system. Recent advancements have focused on expanding the range of E3 ligases and target proteins that can be modulated by molecular glues. Structural elucidation of E3 ligase in complex with molecular glue and the target of interest, combined with computational modeling, facilitates the understanding of the underlying mechanisms of how molecular glues induce targeted degradation. By leveraging these tools, the next generation of molecular glues are expected to offer unprecedented opportunities for combating a wide range of diseases, including cancer, autoimmune disorders, and neurodegenerative conditions.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"109 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.5c00076","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of molecular glues has made significant strides, unlocking new avenues for targeted protein degradation as a therapeutic strategy, thereby expanding the scope of drug discovery into territories previously considered undruggable. Pioneering molecules like thalidomide and its derivatives have paved the way for the development of small molecules that can induce specific protein degradation by hijacking the cellular ubiquitin–proteasome system. Recent advancements have focused on expanding the range of E3 ligases and target proteins that can be modulated by molecular glues. Structural elucidation of E3 ligase in complex with molecular glue and the target of interest, combined with computational modeling, facilitates the understanding of the underlying mechanisms of how molecular glues induce targeted degradation. By leveraging these tools, the next generation of molecular glues are expected to offer unprecedented opportunities for combating a wide range of diseases, including cancer, autoimmune disorders, and neurodegenerative conditions.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.