Exploring force-driven stochastic folding dynamics in mechano-responsive proteins and implications in phenotypic variation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-25 DOI:10.1038/s41467-025-55946-3
Pritam Saha, Vishavdeep Vashisht, Ojas Singh, Amin Sagar, Gaurav Kumar Bhati, Surbhi Garg, Sabyasachi Rakshit
{"title":"Exploring force-driven stochastic folding dynamics in mechano-responsive proteins and implications in phenotypic variation","authors":"Pritam Saha, Vishavdeep Vashisht, Ojas Singh, Amin Sagar, Gaurav Kumar Bhati, Surbhi Garg, Sabyasachi Rakshit","doi":"10.1038/s41467-025-55946-3","DOIUrl":null,"url":null,"abstract":"<p>Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands. In nature, the variants experience declining functions with aging at different rates. We expose these variants to constant and oscillatory forces using magnetic tweezer, and measure variations in stochastic folding dynamics. All variants exhibit multiple microstates under force. However, the protein variant with higher number of intra-domain interactions exhibits transitions among the heterogeneous microstates for larger extent of forces and persisted longer. Conversely, the protein variant with weaker inter-strand correlations exhibits greater unfolding cooperativity and faster intrinsic folding, although its folding-energy landscape is more susceptible to distortion under tension. Our study thus deciphers the molecular mechanisms underlying the variations in force-adaptations and proposes a mechanical relation between genotype and phenotype.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55946-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands. In nature, the variants experience declining functions with aging at different rates. We expose these variants to constant and oscillatory forces using magnetic tweezer, and measure variations in stochastic folding dynamics. All variants exhibit multiple microstates under force. However, the protein variant with higher number of intra-domain interactions exhibits transitions among the heterogeneous microstates for larger extent of forces and persisted longer. Conversely, the protein variant with weaker inter-strand correlations exhibits greater unfolding cooperativity and faster intrinsic folding, although its folding-energy landscape is more susceptible to distortion under tension. Our study thus deciphers the molecular mechanisms underlying the variations in force-adaptations and proposes a mechanical relation between genotype and phenotype.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Temperature seasonality regulates organic carbon burial in lake Single soliton microcomb combined with optical phased array for parallel FMCW LiDAR Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel Composition and liquid-to-solid maturation of protein aggregates contribute to bacterial dormancy development and recovery Sensitive dependence of pairing symmetry on Ni-eg crystal field splitting in the nickelate superconductor La3Ni2O7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1