Silicon-based all-solid-state batteries operating free from external pressure

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-25 DOI:10.1038/s41467-025-56366-z
Zhiyong Zhang, Xiuli Zhang, Yan Liu, Chaofei Lan, Xiang Han, Shanpeng Pei, Linshan Luo, Pengfei Su, Ziqi Zhang, Jingjing Liu, Zhengliang Gong, Cheng Li, Guangyang Lin, Cheng Li, Wei Huang, Ming-Sheng Wang, Songyan Chen
{"title":"Silicon-based all-solid-state batteries operating free from external pressure","authors":"Zhiyong Zhang, Xiuli Zhang, Yan Liu, Chaofei Lan, Xiang Han, Shanpeng Pei, Linshan Luo, Pengfei Su, Ziqi Zhang, Jingjing Liu, Zhengliang Gong, Cheng Li, Guangyang Lin, Cheng Li, Wei Huang, Ming-Sheng Wang, Songyan Chen","doi":"10.1038/s41467-025-56366-z","DOIUrl":null,"url":null,"abstract":"<p>Silicon-based all-solid-state batteries offer high energy density and safety but face significant application challenges due to the requirement of high external pressure. In this study, a Li<sub>21</sub>Si<sub>5</sub>/Si–Li<sub>21</sub>Si<sub>5</sub> double-layered anode is developed for all-solid-state batteries operating free from external pressure. Under the cold-pressed sintering of Li<sub>21</sub>Si<sub>5</sub> alloys, the anode forms a top layer (Li<sub>21</sub>Si<sub>5</sub> layer) with mixed ionic/electronic conduction and a bottom layer (Si–Li<sub>21</sub>Si<sub>5</sub> layer) containing a three-dimensional continuous conductive network. The resultant uniform electric field at the anode|SSE interface eliminates the need for high external pressure and simultaneously enables a twofold enhancement of the lithium-ion flux at the anode interface. Such an efficient ionic/electronic transport system also facilitates the uniform release of cycling expansion stresses from the Si particles and stabilizes bulk-phase and interfacial structure of anode. Consequently, the Li<sub>21</sub>Si<sub>5</sub>/Si–Li<sub>21</sub>Si<sub>5</sub> anode exhibited a critical current density of 10 mA cm<sup>−2</sup> at 45 °C with a capacity of 10 mAh cm<sup>−2</sup>. And the Li<sub>21</sub>Si<sub>5</sub>/Si–Li<sub>21</sub>Si<sub>5</sub>|Li<sub>6</sub>PS<sub>5</sub>Cl|Li<sub>3</sub>InCl<sub>6</sub>|LCO cell achieve an high initial Coulombic efficiency of (97 ± 0.7)% with areal capacity of 2.8 mAh cm<sup>−2</sup> at 0.25 mA cm<sup>−2</sup>, as well as a low expansion rate of 14.5% after 1000 cycles at 2.5 mA cm<sup>−2</sup>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"49 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56366-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon-based all-solid-state batteries offer high energy density and safety but face significant application challenges due to the requirement of high external pressure. In this study, a Li21Si5/Si–Li21Si5 double-layered anode is developed for all-solid-state batteries operating free from external pressure. Under the cold-pressed sintering of Li21Si5 alloys, the anode forms a top layer (Li21Si5 layer) with mixed ionic/electronic conduction and a bottom layer (Si–Li21Si5 layer) containing a three-dimensional continuous conductive network. The resultant uniform electric field at the anode|SSE interface eliminates the need for high external pressure and simultaneously enables a twofold enhancement of the lithium-ion flux at the anode interface. Such an efficient ionic/electronic transport system also facilitates the uniform release of cycling expansion stresses from the Si particles and stabilizes bulk-phase and interfacial structure of anode. Consequently, the Li21Si5/Si–Li21Si5 anode exhibited a critical current density of 10 mA cm−2 at 45 °C with a capacity of 10 mAh cm−2. And the Li21Si5/Si–Li21Si5|Li6PS5Cl|Li3InCl6|LCO cell achieve an high initial Coulombic efficiency of (97 ± 0.7)% with areal capacity of 2.8 mAh cm−2 at 0.25 mA cm−2, as well as a low expansion rate of 14.5% after 1000 cycles at 2.5 mA cm−2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Transmembrane voltage-gated nanopores controlled by electrically tunable in-pore chemistry Testosterone exacerbates neutrophilia and cardiac injury in myocardial infarction via actions in bone marrow Author Correction: Triggering the 2022 eruption of Mauna Loa Catalytic transformation of carbon dioxide into seven-membered heterocycles and their domino transformation into bicyclic oxazolidinones Flat-band enhanced antiferromagnetic fluctuations and superconductivity in pressurized CsCr3Sb5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1