{"title":"3D-printed pillar array pore ceramic membrane for high areal capacity zinc-based flow battery","authors":"Xin Liu, Kenan Xu, Jingyi Ding, Ting Chen, Xiaoxuan Hou, Hongyan Cao, Yu Xia, Yuqin Lu, Yixing Wang, Su Fan, Kang Huang, Zhi Xu","doi":"10.1002/aic.18728","DOIUrl":null,"url":null,"abstract":"Zinc-based flow batteries (ZFBs) are promising for large-scale energy storage applications. However, the formation of Zn dendrites and the limited areal capacity of ZFBs hinder their further development. In this study, we designed a digital light-processed 3D-printed pillar array pore ceramic membrane (3DPC) to construct ZFBs with high areal capacity and long cycle life. The pillar array pore design reduces the transmembrane resistance by ~60% and facilitates K<sup>+</sup> and Na<sup>+</sup> transport. The pore arrays serve as electrolyte reservoirs to regulate interfacial ion distribution and provide sufficient space for Zn deposition. Moreover, the surface hardness of the ceramics up to 1.46 GPa provides resistance against zinc dendrite damage. Furthermore, the cell based on the designed 3DPC exhibits a stable energy efficiency exceeding 79% during operation for over 950 h at an areal capacity of 280 mAh cm<sup>−2</sup>. This study demonstrates the promising potential of 3D-printed ceramic membranes for metal-based flow batteries.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"139 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18728","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-based flow batteries (ZFBs) are promising for large-scale energy storage applications. However, the formation of Zn dendrites and the limited areal capacity of ZFBs hinder their further development. In this study, we designed a digital light-processed 3D-printed pillar array pore ceramic membrane (3DPC) to construct ZFBs with high areal capacity and long cycle life. The pillar array pore design reduces the transmembrane resistance by ~60% and facilitates K+ and Na+ transport. The pore arrays serve as electrolyte reservoirs to regulate interfacial ion distribution and provide sufficient space for Zn deposition. Moreover, the surface hardness of the ceramics up to 1.46 GPa provides resistance against zinc dendrite damage. Furthermore, the cell based on the designed 3DPC exhibits a stable energy efficiency exceeding 79% during operation for over 950 h at an areal capacity of 280 mAh cm−2. This study demonstrates the promising potential of 3D-printed ceramic membranes for metal-based flow batteries.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.