Development of a conditional plasmid for gene deletion in non-model Fusobacterium nucleatum strains.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-01-24 DOI:10.1128/aem.01816-24
Peng Zhou, Bibek G C, Chenggang Wu
{"title":"Development of a conditional plasmid for gene deletion in non-model <i>Fusobacterium nucleatum</i> strains.","authors":"Peng Zhou, Bibek G C, Chenggang Wu","doi":"10.1128/aem.01816-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Fusobacterium nucleatum</i> is an opportunistic pathogen with four subspecies: <i>nucleatum</i> (FNN), <i>vincentii</i> (FNV), <i>polymorphum</i> (FNP), and <i>animalis</i> (FNA), each with distinct disease potentials. Research on fusobacterial pathogenesis has mainly focused on the model strain ATCC 23726 from FNN. However, this narrow focus may overlook significant behaviors of other FNN strains and those from other subspecies, given the genetic and phenotypic diversity within <i>F. nucleatum</i>. While ATCC 23726 is highly transformable, most other <i>Fusobacterium</i> strains exhibit low transformation efficiency, complicating traditional gene deletion methods that rely on non-replicating plasmids. To address this, we developed a conditional plasmid system in which the RepA protein, essential for replication of a pCWU6-based shuttle plasmid, is controlled by an inducible system combining an <i>fdx</i> promoter with a theophylline-responsive riboswitch. This system allows plasmid replication in host cells upon induction and plasmid loss when the inducer is removed, forcing chromosomal integration via homologous recombination in the presence of the antibiotic thiamphenicol. We validated this approach by targeting the <i>galK</i> gene, successfully generating mutants in FNN (ATCC 23726, CTI-2), FNP (ATCC 10953), FNA (21_1A), and the closely related species <i>Fusobacterium periodonticum</i>. Incorporating a <i>sacB</i> counterselection marker in this conditional plasmid enabled the deletion of the <i>radD</i> gene in non-model strains. Interestingly, while <i>radD</i> deletion in 23726, 10953, and 21_1A abolished coaggregation with <i>Actinomyces oris</i>, the CTI-2 mutant retained this ability, suggesting the involvement of other unknown adhesins. This work significantly advances gene deletion in genetically recalcitrant <i>F. nucleatum</i> strains, enhancing our understanding of this pathogen.IMPORTANCE<i>Fusobacterium nucleatum</i> is implicated in various human diseases, including periodontal disease, preterm birth, and colorectal cancer, often linked to specific strains and reflecting the species' genetic and phenotypic diversity. Despite this diversity, most genetic research has centered on the model strain ATCC 23726, potentially missing key aspects of other strains' pathogenic potential. This study addresses a critical gap by developing a novel conditional plasmid system that enables gene deletion in genetically recalcitrant strains of <i>F. nucleatum</i>. We successfully deleted genes in the FNN clinical strain CTI-2, the FNA strain 21_1A, and <i>F. periodonticum</i> for the first time. Our findings, particularly the varying behavior of the <i>radD</i> gene production in coaggregation across strains, underscore the complexity of <i>F. nucleatum</i> and the need for broader genetic studies. This work advances our understanding of <i>F. nucleatum</i> virulence at the strain level and provides a valuable tool for future bacterial genetics research.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0181624"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01816-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fusobacterium nucleatum is an opportunistic pathogen with four subspecies: nucleatum (FNN), vincentii (FNV), polymorphum (FNP), and animalis (FNA), each with distinct disease potentials. Research on fusobacterial pathogenesis has mainly focused on the model strain ATCC 23726 from FNN. However, this narrow focus may overlook significant behaviors of other FNN strains and those from other subspecies, given the genetic and phenotypic diversity within F. nucleatum. While ATCC 23726 is highly transformable, most other Fusobacterium strains exhibit low transformation efficiency, complicating traditional gene deletion methods that rely on non-replicating plasmids. To address this, we developed a conditional plasmid system in which the RepA protein, essential for replication of a pCWU6-based shuttle plasmid, is controlled by an inducible system combining an fdx promoter with a theophylline-responsive riboswitch. This system allows plasmid replication in host cells upon induction and plasmid loss when the inducer is removed, forcing chromosomal integration via homologous recombination in the presence of the antibiotic thiamphenicol. We validated this approach by targeting the galK gene, successfully generating mutants in FNN (ATCC 23726, CTI-2), FNP (ATCC 10953), FNA (21_1A), and the closely related species Fusobacterium periodonticum. Incorporating a sacB counterselection marker in this conditional plasmid enabled the deletion of the radD gene in non-model strains. Interestingly, while radD deletion in 23726, 10953, and 21_1A abolished coaggregation with Actinomyces oris, the CTI-2 mutant retained this ability, suggesting the involvement of other unknown adhesins. This work significantly advances gene deletion in genetically recalcitrant F. nucleatum strains, enhancing our understanding of this pathogen.IMPORTANCEFusobacterium nucleatum is implicated in various human diseases, including periodontal disease, preterm birth, and colorectal cancer, often linked to specific strains and reflecting the species' genetic and phenotypic diversity. Despite this diversity, most genetic research has centered on the model strain ATCC 23726, potentially missing key aspects of other strains' pathogenic potential. This study addresses a critical gap by developing a novel conditional plasmid system that enables gene deletion in genetically recalcitrant strains of F. nucleatum. We successfully deleted genes in the FNN clinical strain CTI-2, the FNA strain 21_1A, and F. periodonticum for the first time. Our findings, particularly the varying behavior of the radD gene production in coaggregation across strains, underscore the complexity of F. nucleatum and the need for broader genetic studies. This work advances our understanding of F. nucleatum virulence at the strain level and provides a valuable tool for future bacterial genetics research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Inactivation of deposited bioaerosols on food contact surfaces with UV-C light emitting diode devices. Variability in cadmium tolerance of closely related Listeria monocytogenes isolates originating from dairy processing environments. Postdocs should receive relocation benefits from the universities that hire them. Systematic analysis of the glucose-PTS in Streptococcus sanguinis highlighted its importance in central metabolism and bacterial fitness. Papain expression in the Escherichia coli cytoplasm by T7-promoter engineering and co-expression with human protein disulfide isomerase (PDI) and thiol peroxidase (GPx7) genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1