Alternative and Sustainable Route to Explore a New Class of Amidines by Photochemical Synergistic Effect of Copper/Nitroxyl Radical Catalysis via Halogen-Atom Transfer.
{"title":"Alternative and Sustainable Route to Explore a New Class of Amidines by Photochemical Synergistic Effect of Copper/Nitroxyl Radical Catalysis via Halogen-Atom Transfer.","authors":"Chandrasekaran Sivaraj, Thirumanavelan Gandhi","doi":"10.1002/chem.202404599","DOIUrl":null,"url":null,"abstract":"<p><p>Amidines are a vital class of bioactive compounds and often necessitate multiple components for their synthesis. Therefore, exploring efficient and sustainable methodologies for their synthesis is indispensable. Herein, we disclose an alternative and greener method for synthesizing an unexplored new class of amidines through the photochemical synergistic effect of copper/nitroxyl radical catalysis. This approach facilitates site-selective radical amination of unactivated imine C(sp2)-H bond in C,N,N-cyclic imines over favored selectivity via halogen-atom transfer (XAT). This greener method ticks 11 out of 12 green chemistry metrics (GCM), effectively sidestepping the need for oxidants, bases, ligands, multistep processes, and harsh conditions, distinguishing it from conventional methods described in previous studies. Kinetic, spectroscopic, and computational tools have been employed to elucidate the synergistic effect of Cu/nitroxyl radical, the role of light, XAT, the influence of substituents, and the order of the reaction in the catalytic cycle.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202404599"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202404599","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amidines are a vital class of bioactive compounds and often necessitate multiple components for their synthesis. Therefore, exploring efficient and sustainable methodologies for their synthesis is indispensable. Herein, we disclose an alternative and greener method for synthesizing an unexplored new class of amidines through the photochemical synergistic effect of copper/nitroxyl radical catalysis. This approach facilitates site-selective radical amination of unactivated imine C(sp2)-H bond in C,N,N-cyclic imines over favored selectivity via halogen-atom transfer (XAT). This greener method ticks 11 out of 12 green chemistry metrics (GCM), effectively sidestepping the need for oxidants, bases, ligands, multistep processes, and harsh conditions, distinguishing it from conventional methods described in previous studies. Kinetic, spectroscopic, and computational tools have been employed to elucidate the synergistic effect of Cu/nitroxyl radical, the role of light, XAT, the influence of substituents, and the order of the reaction in the catalytic cycle.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.