Terminological Resources for Biologically Inspired Design and Biomimetics: Evaluation of the Potential for Ontology Reuse.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-01-09 DOI:10.3390/biomimetics10010039
Dilek Yargan, Ludger Jansen
{"title":"Terminological Resources for Biologically Inspired Design and Biomimetics: Evaluation of the Potential for Ontology Reuse.","authors":"Dilek Yargan, Ludger Jansen","doi":"10.3390/biomimetics10010039","DOIUrl":null,"url":null,"abstract":"<p><p>Biomimetics aims to learn from living systems to develop innovative technical artefacts. As it transcends disciplinary boundaries and needs to integrate both biological and technological knowledge, a domain ontology for biomimetics would be highly desirable. So far, several terminological resources have been designed to support the biomimetic development process. This paper examines nine resources for Biologically Inspired Design and biomimetics, including taxonomies, thesauri, and ontologies. Their benefits and limitations for structuring or organising biomimetic knowledge are evaluated against nine criteria, including availability, clarity, and machine readability. Our analysis shows that existing terminological resources have little to no potential for reuse due to inconsistent structure, ambiguous class labels, lack of standardisation, and lack of availability. Furthermore, no resource adequately represents biomimetic knowledge, as all resources suffer from limitations in content representation, reusability, or infrastructure. In particular, an adequate domain ontology for supporting biomimetic development is lacking; we discuss the desiderata for such an ontology.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762366/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomimetics aims to learn from living systems to develop innovative technical artefacts. As it transcends disciplinary boundaries and needs to integrate both biological and technological knowledge, a domain ontology for biomimetics would be highly desirable. So far, several terminological resources have been designed to support the biomimetic development process. This paper examines nine resources for Biologically Inspired Design and biomimetics, including taxonomies, thesauri, and ontologies. Their benefits and limitations for structuring or organising biomimetic knowledge are evaluated against nine criteria, including availability, clarity, and machine readability. Our analysis shows that existing terminological resources have little to no potential for reuse due to inconsistent structure, ambiguous class labels, lack of standardisation, and lack of availability. Furthermore, no resource adequately represents biomimetic knowledge, as all resources suffer from limitations in content representation, reusability, or infrastructure. In particular, an adequate domain ontology for supporting biomimetic development is lacking; we discuss the desiderata for such an ontology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物启发设计和仿生学的术语资源:本体重用潜力的评估。
仿生学旨在从生命系统中学习,以开发创新的技术人工制品。由于它超越了学科界限,需要整合生物和技术知识,因此非常需要仿生学的领域本体。到目前为止,已经设计了一些术语资源来支持仿生开发过程。本文考察了生物启发设计和仿生学的九种资源,包括分类法、词典和本体。它们在构建或组织仿生知识方面的优势和局限性根据9个标准进行评估,包括可用性、清晰度和机器可读性。我们的分析表明,由于结构不一致、类标签不明确、缺乏标准化和缺乏可用性,现有的术语资源几乎没有重用的潜力。此外,没有资源能够充分地表示仿生知识,因为所有资源都受到内容表示、可重用性或基础结构的限制。特别是,缺乏足够的领域本体来支持仿生发展;我们讨论了这种本体论的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Design and Performance Study of a Gradient Honeycomb Vibration-Damping Structure for the Knee Joint. Influence of Bloat Control on Relocation Rules Automatically Designed via Genetic Programming. Research on Adaptive Cooperative Positioning Algorithm for Underwater Robots Based on Dolphin Group Cooperative Mechanism. Enhancing Neuromorphic Robustness via Recurrence Resonance: The Role of Shared Weak Attractors in Quantum Logic Networks. Hydrodynamic Study of Flow-Channel and Wall-Effect Characteristics in an Oscillating Hydrofoil Biomimetic Pumping Device.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1