Deep-Learning Generated Synthetic Material Decomposition Images Based on Single-Energy CT to Differentiate Intracranial Hemorrhage and Contrast Staining Within 24 Hours After Endovascular Thrombectomy

IF 4.8 1区 医学 Q1 NEUROSCIENCES CNS Neuroscience & Therapeutics Pub Date : 2025-01-24 DOI:10.1111/cns.70235
Tianyu Wang, Caiwen Jiang, Weili Ding, Qing Chen, Dinggang Shen, Zhongxiang Ding
{"title":"Deep-Learning Generated Synthetic Material Decomposition Images Based on Single-Energy CT to Differentiate Intracranial Hemorrhage and Contrast Staining Within 24 Hours After Endovascular Thrombectomy","authors":"Tianyu Wang,&nbsp;Caiwen Jiang,&nbsp;Weili Ding,&nbsp;Qing Chen,&nbsp;Dinggang Shen,&nbsp;Zhongxiang Ding","doi":"10.1111/cns.70235","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>To develop a transformer-based generative adversarial network (trans-GAN) that can generate synthetic material decomposition images from single-energy CT (SECT) for real-time detection of intracranial hemorrhage (ICH) after endovascular thrombectomy.</p>\n </section>\n \n <section>\n \n <h3> Materials</h3>\n \n <p>We retrospectively collected data from two hospitals, consisting of 237 dual-energy CT (DECT) scans, including matched iodine overlay maps, virtual noncontrast, and simulated SECT images. These scans were randomly divided into a training set (<i>n</i> = 190) and an internal validation set (<i>n</i> = 47) in a 4:1 ratio based on the proportion of ICH. Additionally, 26 SECT scans were included as an external validation set. We compared our trans-GAN with state-of-the-art generation methods using several physical metrics of the generated images and evaluated the diagnostic efficacy of the generated images for differentiating ICH from contrast staining.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In comparison with other generation methods, the images generated by trans-GAN exhibited superior quantitative performance. Meanwhile, in terms of ICH detection, the use of generated images from both the internal and external validation sets resulted in a higher area under the receiver operating characteristic curve (0.88 vs. 0.68 and 0.69 vs. 0.54, respectively) and kappa values (0.83 vs. 0.56 and 0.51 vs. 0.31, respectively) compared with input SECT images.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our proposed trans-GAN provides a new approach based on SECT for real-time differentiation of ICH and contrast staining in hospitals without DECT conditions.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70235","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

To develop a transformer-based generative adversarial network (trans-GAN) that can generate synthetic material decomposition images from single-energy CT (SECT) for real-time detection of intracranial hemorrhage (ICH) after endovascular thrombectomy.

Materials

We retrospectively collected data from two hospitals, consisting of 237 dual-energy CT (DECT) scans, including matched iodine overlay maps, virtual noncontrast, and simulated SECT images. These scans were randomly divided into a training set (n = 190) and an internal validation set (n = 47) in a 4:1 ratio based on the proportion of ICH. Additionally, 26 SECT scans were included as an external validation set. We compared our trans-GAN with state-of-the-art generation methods using several physical metrics of the generated images and evaluated the diagnostic efficacy of the generated images for differentiating ICH from contrast staining.

Results

In comparison with other generation methods, the images generated by trans-GAN exhibited superior quantitative performance. Meanwhile, in terms of ICH detection, the use of generated images from both the internal and external validation sets resulted in a higher area under the receiver operating characteristic curve (0.88 vs. 0.68 and 0.69 vs. 0.54, respectively) and kappa values (0.83 vs. 0.56 and 0.51 vs. 0.31, respectively) compared with input SECT images.

Conclusion

Our proposed trans-GAN provides a new approach based on SECT for real-time differentiation of ICH and contrast staining in hospitals without DECT conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CNS Neuroscience & Therapeutics
CNS Neuroscience & Therapeutics 医学-神经科学
CiteScore
7.30
自引率
12.70%
发文量
240
审稿时长
2 months
期刊介绍: CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.
期刊最新文献
Melatonin Regulates Glymphatic Function to Affect Cognitive Deficits, Behavioral Issues, and Blood–Brain Barrier Damage in Mice After Intracerebral Hemorrhage: Potential Links to Circadian Rhythms Targeting LncRNA-Vof16: A Novel Therapeutic Strategy for Neuropathic Pain Relief Xiao-Chai-Hu-Tang Ameliorates Depressive Symptoms via Modulating Neuro-Endocrine Network in Chronic Unpredictable Mild Stress-Induced Mice Function-Specific Localization in the Supplementary Motor Area: A Potential Effective Target for Tourette Syndrome Metrnl/C-KIT Axis Attenuates Early Brain Injury Following Subarachnoid Hemorrhage by Inhibiting Neuronal Ferroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1