NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL

IF 4.8 1区 医学 Q1 NEUROSCIENCES CNS Neuroscience & Therapeutics Pub Date : 2025-01-24 DOI:10.1111/cns.70140
Chunyi Li, Hui Li, Xuejiao Men, Yuge Wang, Xinmei Kang, Mengyan Hu, Xiaotao Su, Shisi Wang, Danli Lu, Shishi Shen, Huipeng Huang, Xiaohui Deng, Yuxin Liu, Lei Zhang, Wei Cai, Aimin Wu, Zhengqi Lu
{"title":"NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL","authors":"Chunyi Li,&nbsp;Hui Li,&nbsp;Xuejiao Men,&nbsp;Yuge Wang,&nbsp;Xinmei Kang,&nbsp;Mengyan Hu,&nbsp;Xiaotao Su,&nbsp;Shisi Wang,&nbsp;Danli Lu,&nbsp;Shishi Shen,&nbsp;Huipeng Huang,&nbsp;Xiaohui Deng,&nbsp;Yuxin Liu,&nbsp;Lei Zhang,&nbsp;Wei Cai,&nbsp;Aimin Wu,&nbsp;Zhengqi Lu","doi":"10.1111/cns.70140","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by <i>NOTCH3</i> mutation, and to explore potential therapeutic strategies to improve glymphatic function.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We assessed glymphatic influx and efflux function in CADASIL mouse models (<i>Notch3</i><sup>R170C</sup>) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>CADASIL mouse exhibited both impaired glymphatic influx and efflux, which impedes waste clearance and promotes brain senescence. In accordance, brain atrophy in CADASIL patients is associated with perivascular space enlargement, indicating that glymphatic impairment contributes to advanced brain senescence in CADASIL. The glymphatic malfunction in CADASIL is attributed to diminished AQP4 expression in astrocytic endfeet, which is the core mediator of glymphatic activity. Mechanistically, AQP4 expression is regulated by NOTCH3-RUNX1-CMYB signaling. Reinforcing AQP4 expression in astrocytes by AAV-based therapy resumes the glymphatic functions in CADASIL mice, which further prevents brain senescence.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>We propose that to improve glymphatic function by reinforcing AQP4 expression is a promising therapeutic strategy in CADASIL.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70140","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods

We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3R170C) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

Results

CADASIL mouse exhibited both impaired glymphatic influx and efflux, which impedes waste clearance and promotes brain senescence. In accordance, brain atrophy in CADASIL patients is associated with perivascular space enlargement, indicating that glymphatic impairment contributes to advanced brain senescence in CADASIL. The glymphatic malfunction in CADASIL is attributed to diminished AQP4 expression in astrocytic endfeet, which is the core mediator of glymphatic activity. Mechanistically, AQP4 expression is regulated by NOTCH3-RUNX1-CMYB signaling. Reinforcing AQP4 expression in astrocytes by AAV-based therapy resumes the glymphatic functions in CADASIL mice, which further prevents brain senescence.

Conclusion

We propose that to improve glymphatic function by reinforcing AQP4 expression is a promising therapeutic strategy in CADASIL.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CNS Neuroscience & Therapeutics
CNS Neuroscience & Therapeutics 医学-神经科学
CiteScore
7.30
自引率
12.70%
发文量
240
审稿时长
2 months
期刊介绍: CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.
期刊最新文献
Melatonin Regulates Glymphatic Function to Affect Cognitive Deficits, Behavioral Issues, and Blood–Brain Barrier Damage in Mice After Intracerebral Hemorrhage: Potential Links to Circadian Rhythms Targeting LncRNA-Vof16: A Novel Therapeutic Strategy for Neuropathic Pain Relief Xiao-Chai-Hu-Tang Ameliorates Depressive Symptoms via Modulating Neuro-Endocrine Network in Chronic Unpredictable Mild Stress-Induced Mice Function-Specific Localization in the Supplementary Motor Area: A Potential Effective Target for Tourette Syndrome Metrnl/C-KIT Axis Attenuates Early Brain Injury Following Subarachnoid Hemorrhage by Inhibiting Neuronal Ferroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1