Prenatal lipopolysaccharide stimulation modulates gastrointestinal immunity and oxidative status in weaned pigs.

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2025-03-01 Epub Date: 2025-01-24 DOI:10.1152/ajpgi.00268.2024
Ty M Mitchell, Nicole C Burdick Sanchez, Jeff A Carroll, Paul R Broadway, Jerrad F Legako, Brooke M Bowen, Amy L Petry
{"title":"Prenatal lipopolysaccharide stimulation modulates gastrointestinal immunity and oxidative status in weaned pigs.","authors":"Ty M Mitchell, Nicole C Burdick Sanchez, Jeff A Carroll, Paul R Broadway, Jerrad F Legako, Brooke M Bowen, Amy L Petry","doi":"10.1152/ajpgi.00268.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal immunity and antioxidant defenses may be bolstered in young animals through prenatal immune stimulation (PIS), but this is largely uninvestigated in swine. This study tested the hypothesis that PIS could regulate offspring's gastrointestinal immune response and oxidative stress profile. To this end, a PIS model was utilized in sows, delivering low-dose lipopolysaccharide (LPS) during the final third of gestation to target the developing immune system. On day 78 ± 1.8 of gestation, 14 Camborough sows (parity = 2.6 ± 1.4) received either saline (Control, CON) or LPS from <i>Escherichia coli</i> O111:B4 (2.5 µg/kg of body wt). A subset of 34 weaned barrows (<i>n</i> = 17 CON, PIS), weaned at 21 ± 1.3 days, were anesthetized for subcutaneous temperature loggers and jugular catheter placement. Following recovery, all pigs received an intravenous injection of LPS (10 µg/kg·body wt) from <i>E. coli</i> O111:B4. Our findings demonstrate that PIS enhances the gut immune response by upregulating key inflammatory cytokines, indicative of a proinflammatory profile. Consistently across the jejunum and ileum, stem cell factor was modulated with heightened expression in PIS than CON (<i>P</i> ≤ 0.05). In the ileum alone, PIS exhibited heightened expression of proinflammatory cytokines and chemokines, including TNFα, IL-6, IL-1β, and CCL3L1, compared with CON (<i>P</i> ≤ 0.05). Exposure to PIS resulted in reduced systemic total antioxidant capacity at <i>hours 2</i> and <i>4</i> postchallenge (<i>P</i> = 0.004). Piglets exposed to PIS had decreased jejunal tissue malondialdehyde concentrations (<i>P</i> = 0.049). Together, these data indicate that exposure to PIS alters the inflammatory profile of the gastrointestinal immune response and oxidative status in weaned pigs.<b>NEW & NOTEWORTHY</b> These studies represent novel investigations into the influence of prenatal immune stimulation (PIS) in swine on the gastrointestinal immune response and oxidative status of offspring following subsequent immune challenge. Notable alterations were observed in gut protein biomarkers, particularly the upregulation of proinflammatory cytokines TNFα, IL-6, and IL-1β in PIS-exposed pigs, but has variable effects on oxidative status. Altered intestinal immune development may contribute to an increased risk for inflammatory disease associated with prenatal immune stimulation.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G197-G205"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00268.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastrointestinal immunity and antioxidant defenses may be bolstered in young animals through prenatal immune stimulation (PIS), but this is largely uninvestigated in swine. This study tested the hypothesis that PIS could regulate offspring's gastrointestinal immune response and oxidative stress profile. To this end, a PIS model was utilized in sows, delivering low-dose lipopolysaccharide (LPS) during the final third of gestation to target the developing immune system. On day 78 ± 1.8 of gestation, 14 Camborough sows (parity = 2.6 ± 1.4) received either saline (Control, CON) or LPS from Escherichia coli O111:B4 (2.5 µg/kg of body wt). A subset of 34 weaned barrows (n = 17 CON, PIS), weaned at 21 ± 1.3 days, were anesthetized for subcutaneous temperature loggers and jugular catheter placement. Following recovery, all pigs received an intravenous injection of LPS (10 µg/kg·body wt) from E. coli O111:B4. Our findings demonstrate that PIS enhances the gut immune response by upregulating key inflammatory cytokines, indicative of a proinflammatory profile. Consistently across the jejunum and ileum, stem cell factor was modulated with heightened expression in PIS than CON (P ≤ 0.05). In the ileum alone, PIS exhibited heightened expression of proinflammatory cytokines and chemokines, including TNFα, IL-6, IL-1β, and CCL3L1, compared with CON (P ≤ 0.05). Exposure to PIS resulted in reduced systemic total antioxidant capacity at hours 2 and 4 postchallenge (P = 0.004). Piglets exposed to PIS had decreased jejunal tissue malondialdehyde concentrations (P = 0.049). Together, these data indicate that exposure to PIS alters the inflammatory profile of the gastrointestinal immune response and oxidative status in weaned pigs.NEW & NOTEWORTHY These studies represent novel investigations into the influence of prenatal immune stimulation (PIS) in swine on the gastrointestinal immune response and oxidative status of offspring following subsequent immune challenge. Notable alterations were observed in gut protein biomarkers, particularly the upregulation of proinflammatory cytokines TNFα, IL-6, and IL-1β in PIS-exposed pigs, but has variable effects on oxidative status. Altered intestinal immune development may contribute to an increased risk for inflammatory disease associated with prenatal immune stimulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
期刊最新文献
DIFFERENTIAL RESPONSES TO PROSTAGLANDINS IN THE CIRCULAR AND LONGITUDINAL MUSCLE LAYERS OF THE MURINE ILEUM. Combination of dietary fiber and exercise training improves fat loss in mice, but does not ameliorate MASLD more than exercise alone. Dynamics of circulatory monocytes trafficking and transitioning to gastric resident macrophages in diabetic gastroparesis. Intestinal organoid coculture systems: current approaches, challenges, and future directions. A menu for microbes: unraveling appetite regulation and weight dynamics through the microbiota-brain connection across the lifespan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1