Non-Rigid Cycle Consistent Bidirectional Network with Transformer for Unsupervised Deformable Functional Magnetic Resonance Imaging Registration.

IF 2.7 3区 医学 Q3 NEUROSCIENCES Brain Sciences Pub Date : 2025-01-05 DOI:10.3390/brainsci15010046
Yingying Wang, Yu Feng, Weiming Zeng
{"title":"Non-Rigid Cycle Consistent Bidirectional Network with Transformer for Unsupervised Deformable Functional Magnetic Resonance Imaging Registration.","authors":"Yingying Wang, Yu Feng, Weiming Zeng","doi":"10.3390/brainsci15010046","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In neuroscience research about functional magnetic resonance imaging (fMRI), accurate inter-subject image registration is the basis for effective statistical analysis. Traditional fMRI registration methods are usually based on high-resolution structural MRI with clear anatomical structure features. However, this registration method based on structural information cannot achieve accurate functional consistency between subjects since the functional regions do not necessarily correspond to anatomical structures. In recent years, fMRI registration methods based on functional information have emerged, which usually ignore the importance of structural MRI information.</p><p><strong>Methods: </strong>In this study, we proposed a non-rigid cycle consistent bidirectional network with Transformer for unsupervised deformable functional MRI registration. The work achieves fMRI registration through structural MRI registration, and functional information is introduced to improve registration performance. Specifically, we employ a bidirectional registration network that implements forward and reverse registration between image pairs and apply Transformer in the registration network to establish remote spatial mapping between image voxels. Functional and structural information are integrated by introducing the local functional connectivity pattern, the local functional connectivity features of the whole brain are extracted as functional information. The proposed registration method was experimented on real fMRI datasets, and qualitative and quantitative evaluations of the quality of the registration method were implemented on the test dataset using relevant evaluation metrics. We implemented group ICA analysis in brain functional networks after registration. Functional consistency was evaluated on the resulting t-maps.</p><p><strong>Results: </strong>Compared with non-learning-based methods (Affine, Syn) and learning-based methods (Transmorph-tiny, Cyclemorph, VoxelMorph x2), our method improves the peak t-value of t-maps on DMN, VN, CEN, and SMN to 18.7, 16.5, 16.6, and 17.3 and the mean number of suprathreshold voxels (<i>p</i> < 0.05, t > 5.01) on the four networks to 2596.25, and there is an average improvement in peak t-value of 23.79%, 12.74%, 12.27%, 7.32%, and 5.43%.</p><p><strong>Conclusions: </strong>The experimental results show that the registration method of this study improves the structural and functional consistency between fMRI with superior registration performance.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15010046","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In neuroscience research about functional magnetic resonance imaging (fMRI), accurate inter-subject image registration is the basis for effective statistical analysis. Traditional fMRI registration methods are usually based on high-resolution structural MRI with clear anatomical structure features. However, this registration method based on structural information cannot achieve accurate functional consistency between subjects since the functional regions do not necessarily correspond to anatomical structures. In recent years, fMRI registration methods based on functional information have emerged, which usually ignore the importance of structural MRI information.

Methods: In this study, we proposed a non-rigid cycle consistent bidirectional network with Transformer for unsupervised deformable functional MRI registration. The work achieves fMRI registration through structural MRI registration, and functional information is introduced to improve registration performance. Specifically, we employ a bidirectional registration network that implements forward and reverse registration between image pairs and apply Transformer in the registration network to establish remote spatial mapping between image voxels. Functional and structural information are integrated by introducing the local functional connectivity pattern, the local functional connectivity features of the whole brain are extracted as functional information. The proposed registration method was experimented on real fMRI datasets, and qualitative and quantitative evaluations of the quality of the registration method were implemented on the test dataset using relevant evaluation metrics. We implemented group ICA analysis in brain functional networks after registration. Functional consistency was evaluated on the resulting t-maps.

Results: Compared with non-learning-based methods (Affine, Syn) and learning-based methods (Transmorph-tiny, Cyclemorph, VoxelMorph x2), our method improves the peak t-value of t-maps on DMN, VN, CEN, and SMN to 18.7, 16.5, 16.6, and 17.3 and the mean number of suprathreshold voxels (p < 0.05, t > 5.01) on the four networks to 2596.25, and there is an average improvement in peak t-value of 23.79%, 12.74%, 12.27%, 7.32%, and 5.43%.

Conclusions: The experimental results show that the registration method of this study improves the structural and functional consistency between fMRI with superior registration performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Sciences
Brain Sciences Neuroscience-General Neuroscience
CiteScore
4.80
自引率
9.10%
发文量
1472
审稿时长
18.71 days
期刊介绍: Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
The Body as a Vessel for Trauma: The Clinical Case Study of Aisha. EEG-Based ADHD Classification Using Autoencoder Feature Extraction and ResNet with Double Augmented Attention Mechanism. Vigorous Exercise Enhances Verbal Fluency Performance in Healthy Young Adults. Gustatory-Visual Interaction in Human Brain Cortex: fNIRS Study. Exploring the Dimensions of Perfectionism in Adolescence: A Multi-Method Study on Mental Health and CBT-Based Psychoeducation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1