{"title":"Non-Rigid Cycle Consistent Bidirectional Network with Transformer for Unsupervised Deformable Functional Magnetic Resonance Imaging Registration.","authors":"Yingying Wang, Yu Feng, Weiming Zeng","doi":"10.3390/brainsci15010046","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In neuroscience research about functional magnetic resonance imaging (fMRI), accurate inter-subject image registration is the basis for effective statistical analysis. Traditional fMRI registration methods are usually based on high-resolution structural MRI with clear anatomical structure features. However, this registration method based on structural information cannot achieve accurate functional consistency between subjects since the functional regions do not necessarily correspond to anatomical structures. In recent years, fMRI registration methods based on functional information have emerged, which usually ignore the importance of structural MRI information.</p><p><strong>Methods: </strong>In this study, we proposed a non-rigid cycle consistent bidirectional network with Transformer for unsupervised deformable functional MRI registration. The work achieves fMRI registration through structural MRI registration, and functional information is introduced to improve registration performance. Specifically, we employ a bidirectional registration network that implements forward and reverse registration between image pairs and apply Transformer in the registration network to establish remote spatial mapping between image voxels. Functional and structural information are integrated by introducing the local functional connectivity pattern, the local functional connectivity features of the whole brain are extracted as functional information. The proposed registration method was experimented on real fMRI datasets, and qualitative and quantitative evaluations of the quality of the registration method were implemented on the test dataset using relevant evaluation metrics. We implemented group ICA analysis in brain functional networks after registration. Functional consistency was evaluated on the resulting t-maps.</p><p><strong>Results: </strong>Compared with non-learning-based methods (Affine, Syn) and learning-based methods (Transmorph-tiny, Cyclemorph, VoxelMorph x2), our method improves the peak t-value of t-maps on DMN, VN, CEN, and SMN to 18.7, 16.5, 16.6, and 17.3 and the mean number of suprathreshold voxels (<i>p</i> < 0.05, t > 5.01) on the four networks to 2596.25, and there is an average improvement in peak t-value of 23.79%, 12.74%, 12.27%, 7.32%, and 5.43%.</p><p><strong>Conclusions: </strong>The experimental results show that the registration method of this study improves the structural and functional consistency between fMRI with superior registration performance.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15010046","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In neuroscience research about functional magnetic resonance imaging (fMRI), accurate inter-subject image registration is the basis for effective statistical analysis. Traditional fMRI registration methods are usually based on high-resolution structural MRI with clear anatomical structure features. However, this registration method based on structural information cannot achieve accurate functional consistency between subjects since the functional regions do not necessarily correspond to anatomical structures. In recent years, fMRI registration methods based on functional information have emerged, which usually ignore the importance of structural MRI information.
Methods: In this study, we proposed a non-rigid cycle consistent bidirectional network with Transformer for unsupervised deformable functional MRI registration. The work achieves fMRI registration through structural MRI registration, and functional information is introduced to improve registration performance. Specifically, we employ a bidirectional registration network that implements forward and reverse registration between image pairs and apply Transformer in the registration network to establish remote spatial mapping between image voxels. Functional and structural information are integrated by introducing the local functional connectivity pattern, the local functional connectivity features of the whole brain are extracted as functional information. The proposed registration method was experimented on real fMRI datasets, and qualitative and quantitative evaluations of the quality of the registration method were implemented on the test dataset using relevant evaluation metrics. We implemented group ICA analysis in brain functional networks after registration. Functional consistency was evaluated on the resulting t-maps.
Results: Compared with non-learning-based methods (Affine, Syn) and learning-based methods (Transmorph-tiny, Cyclemorph, VoxelMorph x2), our method improves the peak t-value of t-maps on DMN, VN, CEN, and SMN to 18.7, 16.5, 16.6, and 17.3 and the mean number of suprathreshold voxels (p < 0.05, t > 5.01) on the four networks to 2596.25, and there is an average improvement in peak t-value of 23.79%, 12.74%, 12.27%, 7.32%, and 5.43%.
Conclusions: The experimental results show that the registration method of this study improves the structural and functional consistency between fMRI with superior registration performance.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.