{"title":"Motor Imagery EEG Classification Based on Multi-Domain Feature Rotation and Stacking Ensemble.","authors":"Xianglong Zhu, Ming Meng, Zewen Yan, Zhizeng Luo","doi":"10.3390/brainsci15010050","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Decoding motor intentions from electroencephalogram (EEG) signals is a critical component of motor imagery-based brain-computer interface (MI-BCIs). In traditional EEG signal classification, effectively utilizing the valuable information contained within the electroencephalogram is crucial.</p><p><strong>Objectives: </strong>To further optimize the use of information from various domains, we propose a novel framework based on multi-domain feature rotation transformation and stacking ensemble for classifying MI tasks.</p><p><strong>Methods: </strong>Initially, we extract the features of Time Domain, Frequency domain, Time-Frequency domain, and Spatial Domain from the EEG signals, and perform feature selection for each domain to identify significant features that possess strong discriminative capacity. Subsequently, local rotation transformations are applied to the significant feature set to generate a rotated feature set, enhancing the representational capacity of the features. Next, the rotated features were fused with the original significant features from each domain to obtain composite features for each domain. Finally, we employ a stacking ensemble approach, where the prediction results of base classifiers corresponding to different domain features and the set of significant features undergo linear discriminant analysis for dimensionality reduction, yielding discriminative feature integration as input for the meta-classifier for classification.</p><p><strong>Results: </strong>The proposed method achieves average classification accuracies of 92.92%, 89.13%, and 86.26% on the BCI Competition III Dataset IVa, BCI Competition IV Dataset I, and BCI Competition IV Dataset 2a, respectively.</p><p><strong>Conclusions: </strong>Experimental results show that the method proposed in this paper outperforms several existing MI classification methods, such as the Common Time-Frequency-Spatial Patterns and the Selective Extract of the Multi-View Time-Frequency Decomposed Spatial, in terms of classification accuracy and robustness.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15010050","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Decoding motor intentions from electroencephalogram (EEG) signals is a critical component of motor imagery-based brain-computer interface (MI-BCIs). In traditional EEG signal classification, effectively utilizing the valuable information contained within the electroencephalogram is crucial.
Objectives: To further optimize the use of information from various domains, we propose a novel framework based on multi-domain feature rotation transformation and stacking ensemble for classifying MI tasks.
Methods: Initially, we extract the features of Time Domain, Frequency domain, Time-Frequency domain, and Spatial Domain from the EEG signals, and perform feature selection for each domain to identify significant features that possess strong discriminative capacity. Subsequently, local rotation transformations are applied to the significant feature set to generate a rotated feature set, enhancing the representational capacity of the features. Next, the rotated features were fused with the original significant features from each domain to obtain composite features for each domain. Finally, we employ a stacking ensemble approach, where the prediction results of base classifiers corresponding to different domain features and the set of significant features undergo linear discriminant analysis for dimensionality reduction, yielding discriminative feature integration as input for the meta-classifier for classification.
Results: The proposed method achieves average classification accuracies of 92.92%, 89.13%, and 86.26% on the BCI Competition III Dataset IVa, BCI Competition IV Dataset I, and BCI Competition IV Dataset 2a, respectively.
Conclusions: Experimental results show that the method proposed in this paper outperforms several existing MI classification methods, such as the Common Time-Frequency-Spatial Patterns and the Selective Extract of the Multi-View Time-Frequency Decomposed Spatial, in terms of classification accuracy and robustness.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.