Diagnosis of Cognitive and Mental Disorders: A New Approach Based on Spectral-Spatiotemporal Analysis and Local Graph Structures of Electroencephalogram Signals.
Arezoo Sanati Fahandari, Sara Moshiryan, Ateke Goshvarpour
{"title":"Diagnosis of Cognitive and Mental Disorders: A New Approach Based on Spectral-Spatiotemporal Analysis and Local Graph Structures of Electroencephalogram Signals.","authors":"Arezoo Sanati Fahandari, Sara Moshiryan, Ateke Goshvarpour","doi":"10.3390/brainsci15010068","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>The classification of psychological disorders has gained significant importance due to recent advancements in signal processing techniques. Traditionally, research in this domain has focused primarily on binary classifications of disorders. This study aims to classify five distinct states, including one control group and four categories of psychological disorders.</p><p><strong>Methods: </strong>Our investigation will utilize algorithms based on Granger causality and local graph structures to improve classification accuracy. Feature extraction from connectivity matrices was performed using local structure graphs. The extracted features were subsequently classified employing K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost, and Naïve Bayes classifiers.</p><p><strong>Results: </strong>The KNN classifier demonstrated the highest accuracy in the gamma band for the depression category, achieving an accuracy of 89.36%, a sensitivity of 89.57%, an F1 score of 94.30%, and a precision of 99.90%. Furthermore, the SVM classifier surpassed the other machine learning algorithms when all features were integrated, attaining an accuracy of 89.06%, a sensitivity of 88.97%, an F1 score of 94.16%, and a precision of 100% for the discrimination of depression in the gamma band.</p><p><strong>Conclusions: </strong>The proposed methodology provides a novel approach for analyzing EEG signals and holds potential applications in the classification of psychological disorders.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15010068","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: The classification of psychological disorders has gained significant importance due to recent advancements in signal processing techniques. Traditionally, research in this domain has focused primarily on binary classifications of disorders. This study aims to classify five distinct states, including one control group and four categories of psychological disorders.
Methods: Our investigation will utilize algorithms based on Granger causality and local graph structures to improve classification accuracy. Feature extraction from connectivity matrices was performed using local structure graphs. The extracted features were subsequently classified employing K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost, and Naïve Bayes classifiers.
Results: The KNN classifier demonstrated the highest accuracy in the gamma band for the depression category, achieving an accuracy of 89.36%, a sensitivity of 89.57%, an F1 score of 94.30%, and a precision of 99.90%. Furthermore, the SVM classifier surpassed the other machine learning algorithms when all features were integrated, attaining an accuracy of 89.06%, a sensitivity of 88.97%, an F1 score of 94.16%, and a precision of 100% for the discrimination of depression in the gamma band.
Conclusions: The proposed methodology provides a novel approach for analyzing EEG signals and holds potential applications in the classification of psychological disorders.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.