Dynamic Neural Network States During Social and Non-Social Cueing in Virtual Reality Working Memory Tasks: A Leading Eigenvector Dynamics Analysis Approach.
{"title":"Dynamic Neural Network States During Social and Non-Social Cueing in Virtual Reality Working Memory Tasks: A Leading Eigenvector Dynamics Analysis Approach.","authors":"Pinar Ozel","doi":"10.3390/brainsci15010004","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>This research investigates brain connectivity patterns in reaction to social and non-social stimuli within a virtual reality environment, emphasizing their impact on cognitive functions, specifically working memory.</p><p><strong>Methods: </strong>Employing the LEiDA framework with EEG data from 47 participants, I examined dynamic brain network states elicited by social avatars compared to non-social stick cues during a VR memory task. Through the integration of LEiDA with deep learning and graph theory analyses, unique connectivity patterns associated with cue type were discerned, underscoring the substantial influence of social cues on cognitive processes. LEiDA, conventionally utilized with fMRI, was creatively employed in EEG to detect swift alterations in brain network states, offering insights into cognitive processing dynamics.</p><p><strong>Results: </strong>The findings indicate distinct neural states for social and non-social cues; notably, social cues correlated with a unique brain state characterized by increased connectivity within self-referential and memory-processing networks, implying greater cognitive engagement. Moreover, deep learning attained approximately 99% accuracy in differentiating cue contexts, highlighting the efficacy of prominent eigenvectors from LEiDA in EEG analysis. Analysis of graph theory also uncovered structural network disparities, signifying enhanced integration in contexts involving social cues.</p><p><strong>Conclusions: </strong>This multi-method approach elucidates the dynamic influence of social cues on brain connectivity and cognition, establishing a basis for VR-based cognitive rehabilitation and immersive learning, wherein social signals may significantly enhance cognitive function.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15010004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: This research investigates brain connectivity patterns in reaction to social and non-social stimuli within a virtual reality environment, emphasizing their impact on cognitive functions, specifically working memory.
Methods: Employing the LEiDA framework with EEG data from 47 participants, I examined dynamic brain network states elicited by social avatars compared to non-social stick cues during a VR memory task. Through the integration of LEiDA with deep learning and graph theory analyses, unique connectivity patterns associated with cue type were discerned, underscoring the substantial influence of social cues on cognitive processes. LEiDA, conventionally utilized with fMRI, was creatively employed in EEG to detect swift alterations in brain network states, offering insights into cognitive processing dynamics.
Results: The findings indicate distinct neural states for social and non-social cues; notably, social cues correlated with a unique brain state characterized by increased connectivity within self-referential and memory-processing networks, implying greater cognitive engagement. Moreover, deep learning attained approximately 99% accuracy in differentiating cue contexts, highlighting the efficacy of prominent eigenvectors from LEiDA in EEG analysis. Analysis of graph theory also uncovered structural network disparities, signifying enhanced integration in contexts involving social cues.
Conclusions: This multi-method approach elucidates the dynamic influence of social cues on brain connectivity and cognition, establishing a basis for VR-based cognitive rehabilitation and immersive learning, wherein social signals may significantly enhance cognitive function.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.