{"title":"Performance of a Two-Week Rehabilitation Improves Motor Function in Inpatients with Progressive Supranuclear Palsy: A Pre-Post Study.","authors":"Naomi Matsuda, Yasuyuki Takamatsu, Makoto Sawada, Ikuko Aiba","doi":"10.3390/brainsci15010088","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Progressive supranuclear palsy (PSP) is characterized by early postural instability and gait dysfunction, with frequent falls. Rehabilitation is an important therapeutic approach for motor dysfunction in patients with PSP. However, no conclusions have yet been drawn regarding the beneficial effects of rehabilitation in PSP, including the optimal duration of rehabilitation and differences in treatment effects among PSP subtypes. Herein, we investigated the effects of short-term rehabilitation and separately analyzed the effects on patients with PSP-Richardson's syndrome (RS) and PSP-progressive gait freezing (PGF). <b>Methods</b>: The participants underwent several therapeutic exercise programs individualized for each participant, performed over 2 weeks. Analysis was performed on 25 patients with PSP-RS and eight with PSP-PGF. <b>Results</b>: Short-term rehabilitation improved the Berg Balance Scale score in both the PSP-RS and PSP-PGF groups, step length on the symptom-dominant side in PSP-RS, the coefficient of variation of step length on the symptom-dominant side, and the stance phase of the Symmetry Index in PSP-PGF. <b>Conclusions</b>: Overall, this 2-week short-term rehabilitation intervention was shown to have beneficial effects on balance in patients with PSP-RS and PSP-PGF.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15010088","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Progressive supranuclear palsy (PSP) is characterized by early postural instability and gait dysfunction, with frequent falls. Rehabilitation is an important therapeutic approach for motor dysfunction in patients with PSP. However, no conclusions have yet been drawn regarding the beneficial effects of rehabilitation in PSP, including the optimal duration of rehabilitation and differences in treatment effects among PSP subtypes. Herein, we investigated the effects of short-term rehabilitation and separately analyzed the effects on patients with PSP-Richardson's syndrome (RS) and PSP-progressive gait freezing (PGF). Methods: The participants underwent several therapeutic exercise programs individualized for each participant, performed over 2 weeks. Analysis was performed on 25 patients with PSP-RS and eight with PSP-PGF. Results: Short-term rehabilitation improved the Berg Balance Scale score in both the PSP-RS and PSP-PGF groups, step length on the symptom-dominant side in PSP-RS, the coefficient of variation of step length on the symptom-dominant side, and the stance phase of the Symmetry Index in PSP-PGF. Conclusions: Overall, this 2-week short-term rehabilitation intervention was shown to have beneficial effects on balance in patients with PSP-RS and PSP-PGF.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.