Proteomic Variation in the Oral Secretion of Spodoptera exigua and Spodoptera littoralis Larvae in Response to Different food Sources.

IF 2.2 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Chemical Ecology Pub Date : 2025-01-24 DOI:10.1007/s10886-025-01571-9
Elena García-Marín, Jordi Gamir, Cristina M Crava
{"title":"Proteomic Variation in the Oral Secretion of Spodoptera exigua and Spodoptera littoralis Larvae in Response to Different food Sources.","authors":"Elena García-Marín, Jordi Gamir, Cristina M Crava","doi":"10.1007/s10886-025-01571-9","DOIUrl":null,"url":null,"abstract":"<p><p>The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response. In this study, we explored the protein components of the OS of two Spodoptera species, Spodoptera exigua and Spodoptera littoralis. We identified 336 and 276 proteins, respectively, with a major role in digestion. Using a label-free quantitative proteomics approach, we investigated changes in protein abundance in the OS of both species after switching from a laboratory artificial diet to detached pepper and tomato leaves. Several proteins, such as various lipases, polycalin and a β-1,3-glucan binding protein, were more abundant in the OS of leaf-fed larvae in both species. Conversely, a tryptophan-aspartic acid (WD)-repeat containing protein significantly decreased upon feeding on plant leaves in both species. Phenotypic plasticity dependent on each Spodoptera-plant combination was observed for several peptidases, potentially related to the need to overcome the effects of proteinase inhibitors differentially produced by the two plant species, and for several REPAT proteins, possibly related to the specific modulation of each Spodoptera-plant interaction. Altogether, our results provide useful information for understanding the interaction of these two polyphagous Spodoptera species with the host plants, and help to identify evolutionary traits that may influence the outcome of herbivory in each of these two related species.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"51 1","pages":"10"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-025-01571-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response. In this study, we explored the protein components of the OS of two Spodoptera species, Spodoptera exigua and Spodoptera littoralis. We identified 336 and 276 proteins, respectively, with a major role in digestion. Using a label-free quantitative proteomics approach, we investigated changes in protein abundance in the OS of both species after switching from a laboratory artificial diet to detached pepper and tomato leaves. Several proteins, such as various lipases, polycalin and a β-1,3-glucan binding protein, were more abundant in the OS of leaf-fed larvae in both species. Conversely, a tryptophan-aspartic acid (WD)-repeat containing protein significantly decreased upon feeding on plant leaves in both species. Phenotypic plasticity dependent on each Spodoptera-plant combination was observed for several peptidases, potentially related to the need to overcome the effects of proteinase inhibitors differentially produced by the two plant species, and for several REPAT proteins, possibly related to the specific modulation of each Spodoptera-plant interaction. Altogether, our results provide useful information for understanding the interaction of these two polyphagous Spodoptera species with the host plants, and help to identify evolutionary traits that may influence the outcome of herbivory in each of these two related species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Ecology
Journal of Chemical Ecology 环境科学-生化与分子生物学
CiteScore
5.10
自引率
4.30%
发文量
58
审稿时长
4 months
期刊介绍: Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature. Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.
期刊最新文献
Entomopathogenic Nematode Species Vary in Their Behavior and Virulence in Response to Cardiac Glycosides Within and Around Insect Hosts. Host Plant Odour and Sex Pheromone are Integral to Mate Finding in Codling Moth. Shared Pheromone Compounds in Neotropical Rice Stink Bugs: The Role of Zingiberenol and Sesquipiperitol. Proteomic Variation in the Oral Secretion of Spodoptera exigua and Spodoptera littoralis Larvae in Response to Different food Sources. Structure-Function Analysis of Volatile (Z)-3-Fatty Alcohols in Tomato.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1