Structure-Function Analysis of Volatile (Z)-3-Fatty Alcohols in Tomato.

IF 2.2 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Chemical Ecology Pub Date : 2025-01-24 DOI:10.1007/s10886-025-01557-7
Kirsten Fisher, Harshita Negi, Owen Cole, Fallon Tomlin, Qian Wang, Johannes W Stratmann
{"title":"Structure-Function Analysis of Volatile (Z)-3-Fatty Alcohols in Tomato.","authors":"Kirsten Fisher, Harshita Negi, Owen Cole, Fallon Tomlin, Qian Wang, Johannes W Stratmann","doi":"10.1007/s10886-025-01557-7","DOIUrl":null,"url":null,"abstract":"<p><p>Plants emit green leaf volatiles (GLVs) in response to biotic and abiotic stress. Receiver plants perceive GLVs as alarm cues resulting in activation of defensive or protective mechanisms. While this is well documented, it is not known how GLVs are perceived by receiver cells and what the structural determinants are for GLV activity. We tested whether the carbon chain length in (Z)-3-fatty alcohols with four to nine carbons and the double bonds in six-carbon alcohols contribute to bioactivity. In Solanum peruvianum suspension-cultured cells we found that (Z)-3-fatty alcohols, except (Z)-3-butenol, induce medium alkalinization and MAP kinase phosphorylation, two signaling responses often tied to the perception of molecular patterns that function in plant immunity and resistance to herbivores. In tomato (S. lycopersicum) seedlings, we found that (Z)-3-fatty alcohols induce inhibition of root growth. In both signaling and physiological responses, (Z)-3-octenol and (Z)-3-nonenol had a higher bioactivity than (Z)-3-heptenol and (Z)-3-hexenol, with (Z)-3-butenol only being active in root growth assays. Bioactivity correlated not only with chain length but also with lipophilicity of the fatty alcohols. The natural GLVs (E)-2-hexenol and the saturated 1-hexanol exhibited a higher bioactivity in pH assays than (Z)-3-hexenol, indicating that the presence and position of a double bond also contributes to bioactivity. Our results indicate that perceiving mechanisms for (Z)-3-fatty alcohols show a preference for longer chain fatty alcohols or that longer chain fatty alcohols are more accessible to receptors.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"51 1","pages":"6"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-025-01557-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants emit green leaf volatiles (GLVs) in response to biotic and abiotic stress. Receiver plants perceive GLVs as alarm cues resulting in activation of defensive or protective mechanisms. While this is well documented, it is not known how GLVs are perceived by receiver cells and what the structural determinants are for GLV activity. We tested whether the carbon chain length in (Z)-3-fatty alcohols with four to nine carbons and the double bonds in six-carbon alcohols contribute to bioactivity. In Solanum peruvianum suspension-cultured cells we found that (Z)-3-fatty alcohols, except (Z)-3-butenol, induce medium alkalinization and MAP kinase phosphorylation, two signaling responses often tied to the perception of molecular patterns that function in plant immunity and resistance to herbivores. In tomato (S. lycopersicum) seedlings, we found that (Z)-3-fatty alcohols induce inhibition of root growth. In both signaling and physiological responses, (Z)-3-octenol and (Z)-3-nonenol had a higher bioactivity than (Z)-3-heptenol and (Z)-3-hexenol, with (Z)-3-butenol only being active in root growth assays. Bioactivity correlated not only with chain length but also with lipophilicity of the fatty alcohols. The natural GLVs (E)-2-hexenol and the saturated 1-hexanol exhibited a higher bioactivity in pH assays than (Z)-3-hexenol, indicating that the presence and position of a double bond also contributes to bioactivity. Our results indicate that perceiving mechanisms for (Z)-3-fatty alcohols show a preference for longer chain fatty alcohols or that longer chain fatty alcohols are more accessible to receptors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Ecology
Journal of Chemical Ecology 环境科学-生化与分子生物学
CiteScore
5.10
自引率
4.30%
发文量
58
审稿时长
4 months
期刊介绍: Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature. Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.
期刊最新文献
Entomopathogenic Nematode Species Vary in Their Behavior and Virulence in Response to Cardiac Glycosides Within and Around Insect Hosts. Host Plant Odour and Sex Pheromone are Integral to Mate Finding in Codling Moth. Shared Pheromone Compounds in Neotropical Rice Stink Bugs: The Role of Zingiberenol and Sesquipiperitol. Proteomic Variation in the Oral Secretion of Spodoptera exigua and Spodoptera littoralis Larvae in Response to Different food Sources. Structure-Function Analysis of Volatile (Z)-3-Fatty Alcohols in Tomato.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1