{"title":"ERBB4 selectively amplifies TGF-β pro-metastatic responses.","authors":"Peihong Luo, Huanyu Hong, Baoling Zhang, Jie Li, Shuyi Zhang, Chaomin Yue, Jin Cao, Jia Wang, Yuhan Dai, Qingqing Liao, Pinglong Xu, Bing Yang, Xia Liu, Xia Lin, Yi Yu, Xin-Hua Feng","doi":"10.1016/j.celrep.2024.115210","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response. ERBB4 directly phosphorylates Tyr162 in the linker region of SMAD4, which enables SMAD4 to achieve a higher DNA-binding ability and potentiates TGF-β-induced gene transcription associated with epithelial-to-mesenchymal transition (EMT), cell migration, and invasion without affecting the genes involved in growth inhibition. These selective effects facilitate lung cancer metastasis in mouse models. This discovery sheds light on the previously unrecognized role of SMAD4 as a substrate of ERBB4 and highlights the selective involvement of the ERBB4-SMAD4 regulatory axis in tumor metastasis.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115210"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115210","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response. ERBB4 directly phosphorylates Tyr162 in the linker region of SMAD4, which enables SMAD4 to achieve a higher DNA-binding ability and potentiates TGF-β-induced gene transcription associated with epithelial-to-mesenchymal transition (EMT), cell migration, and invasion without affecting the genes involved in growth inhibition. These selective effects facilitate lung cancer metastasis in mouse models. This discovery sheds light on the previously unrecognized role of SMAD4 as a substrate of ERBB4 and highlights the selective involvement of the ERBB4-SMAD4 regulatory axis in tumor metastasis.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.