Prediction of immunotherapy response in nasopharyngeal carcinoma: a comparative study using MRI-based radiomics signature and programmed cell death ligand 1 expression score.

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Pub Date : 2025-01-24 DOI:10.1007/s00330-025-11350-5
Hui Mai, Li Li, Xin Xin, Zhike Jiang, Yongfang Tang, Jie Huang, Yanxing Lei, Lianzhi Chen, Tianfa Dong, Xi Zhong
{"title":"Prediction of immunotherapy response in nasopharyngeal carcinoma: a comparative study using MRI-based radiomics signature and programmed cell death ligand 1 expression score.","authors":"Hui Mai, Li Li, Xin Xin, Zhike Jiang, Yongfang Tang, Jie Huang, Yanxing Lei, Lianzhi Chen, Tianfa Dong, Xi Zhong","doi":"10.1007/s00330-025-11350-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To compare an MRI-based radiomics signature with the programmed cell death ligand 1 (PD-L1) expression score for predicting immunotherapy response in nasopharyngeal carcinoma (NPC).</p><p><strong>Methods: </strong>Consecutive patients with NPC who received immunotherapy between January 2019 and June 2022 were divided into training (n = 111) and validation (n = 66) sets. Tumor radiomics features were extracted from pretreatment MR images. PD-L1 combined positive score (CPS) was calculated using immunohistochemistry. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature selection and radiomics signature construction. Receiver operating characteristic (ROC) curve analysis was performed to assess prediction performance.</p><p><strong>Results: </strong>A total of eleven radiomics features with the greatest discrimination capability were identified by the LASSO algorithm to construct the radiomics signature. In predicting patients with objective response to immunotherapy, radiomics score (Rd-score) yielded a significantly higher area under the ROC curve than that of CPS in both the training (0.790 vs. 0.645, p = 0.025) and the validation (0.735 vs. 0.608, p = 0.038) sets. Multivariate analysis identified the Rd-score as an independent influencing factor in predicting immunotherapy response (odds ratio = 19.963, p < 0.001). Kaplan-Meier analysis indicated that patients with Rd-score ≥ 0.5 showed longer progression-free survival than patients with Rd-score < 0.5 (log-rank p < 0.01).</p><p><strong>Conclusion: </strong>An MRI-based radiomics signature demonstrated greater efficacy than the PD-L1 expression score in predicting immunotherapy response in patients with NPC.</p><p><strong>Key points: </strong>Question How does an MRI-based radiomics signature compare with the programmed cell death ligand 1 expression score for predicting immunotherapy response in nasopharyngeal carcinoma? Findings The MRI-based radiomics signature demonstrated superior predictive value compared with programmed cell death ligand 1 expression score in identifying immunotherapy responders. Clinical relevance MRI-based radiomics are a promising novel noninvasive tool for predicting immunotherapy outcomes in nasopharyngeal carcinoma.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11350-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To compare an MRI-based radiomics signature with the programmed cell death ligand 1 (PD-L1) expression score for predicting immunotherapy response in nasopharyngeal carcinoma (NPC).

Methods: Consecutive patients with NPC who received immunotherapy between January 2019 and June 2022 were divided into training (n = 111) and validation (n = 66) sets. Tumor radiomics features were extracted from pretreatment MR images. PD-L1 combined positive score (CPS) was calculated using immunohistochemistry. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature selection and radiomics signature construction. Receiver operating characteristic (ROC) curve analysis was performed to assess prediction performance.

Results: A total of eleven radiomics features with the greatest discrimination capability were identified by the LASSO algorithm to construct the radiomics signature. In predicting patients with objective response to immunotherapy, radiomics score (Rd-score) yielded a significantly higher area under the ROC curve than that of CPS in both the training (0.790 vs. 0.645, p = 0.025) and the validation (0.735 vs. 0.608, p = 0.038) sets. Multivariate analysis identified the Rd-score as an independent influencing factor in predicting immunotherapy response (odds ratio = 19.963, p < 0.001). Kaplan-Meier analysis indicated that patients with Rd-score ≥ 0.5 showed longer progression-free survival than patients with Rd-score < 0.5 (log-rank p < 0.01).

Conclusion: An MRI-based radiomics signature demonstrated greater efficacy than the PD-L1 expression score in predicting immunotherapy response in patients with NPC.

Key points: Question How does an MRI-based radiomics signature compare with the programmed cell death ligand 1 expression score for predicting immunotherapy response in nasopharyngeal carcinoma? Findings The MRI-based radiomics signature demonstrated superior predictive value compared with programmed cell death ligand 1 expression score in identifying immunotherapy responders. Clinical relevance MRI-based radiomics are a promising novel noninvasive tool for predicting immunotherapy outcomes in nasopharyngeal carcinoma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology
European Radiology 医学-核医学
CiteScore
11.60
自引率
8.50%
发文量
874
审稿时长
2-4 weeks
期刊介绍: European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field. This is the Journal of the European Society of Radiology, and the official journal of a number of societies. From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.
期刊最新文献
Deep learning-based breast cancer diagnosis in breast MRI: systematic review and meta-analysis. An international survey of diffusion and perfusion magnetic resonance imaging implementation in the head and neck. Age-stratified deep learning model for thyroid tumor classification: a multicenter diagnostic study. High-resolution deep learning reconstruction for coronary CTA: compared efficacy of stenosis evaluation with other methods at in vitro and in vivo studies. Lower extremity MRI: are their requests always appropriate in France?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1