Karin Landmayer, Bruna de Oliveira Iatarola, Talita Portela Pereira, Raquel Shimizu Mori, Alyssa Teixeira Obeid, Mariele Vertuan, Daniela Alvim Chrisostomo, Ana Carolina Magalhães, Lulwah Alreshaid, Paulo Henrique Dos Santos, Anuradha Prakki, Luciana Fávaro Francisconi-Dos-Rios
{"title":"Effect of EGCG-Methacrylate-Functionalized Resin Infiltrant on White Spot Lesions: An In Vitro Study.","authors":"Karin Landmayer, Bruna de Oliveira Iatarola, Talita Portela Pereira, Raquel Shimizu Mori, Alyssa Teixeira Obeid, Mariele Vertuan, Daniela Alvim Chrisostomo, Ana Carolina Magalhães, Lulwah Alreshaid, Paulo Henrique Dos Santos, Anuradha Prakki, Luciana Fávaro Francisconi-Dos-Rios","doi":"10.3390/jfb16010006","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the color change (ΔE<sub>00</sub>) and penetration depth (PD) of white spot lesions (WSLs) infiltrated with the resin infiltrant (Icon<sup>®</sup>) functionalized with methacrylate epigallocatechin-3-gallate (EGCG). To introduce polymerizable double bonds, EGCG was reacted with methacryloyl chloride (EM). Subsequently, the Icon resin infiltrant (I) was loaded with neat EGCG (IE) or EGCG-methacrylate (IEM) at 2 wt% each. WSLs were created on bovine enamel blocks and treated with I, IE, or IEM. Sound and untreated enamel surfaces were used as controls (C). Infiltrant PD (%) was determined by Confocal Laser Scanning Microscopy (CLSM, n = 12) analysis. For color change (ΔE<sub>00</sub>) determination (n = 14), ΔL, Δa, and Δb, half of each sample was kept sound as a reference area. The color was determined with a spectrophotometer. Data were statistically evaluated (<i>p</i> = 0.05). Surface morphology was obtained as a qualitative response variable using 3D CLSM. PD (%) did not differ statistically for I, IE, and IEM (<i>p</i> = 0.780). Groups I and IEM showed similar performance on color change (ΔE<sub>00</sub>) compared to the control group, while IE exhibited intermediate results, with no significant difference observed between the untreated, I, and IEM groups (<i>p</i> < 0.001). IEM promoted the masking of the WSL color without interfering with the PD.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16010006","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluated the color change (ΔE00) and penetration depth (PD) of white spot lesions (WSLs) infiltrated with the resin infiltrant (Icon®) functionalized with methacrylate epigallocatechin-3-gallate (EGCG). To introduce polymerizable double bonds, EGCG was reacted with methacryloyl chloride (EM). Subsequently, the Icon resin infiltrant (I) was loaded with neat EGCG (IE) or EGCG-methacrylate (IEM) at 2 wt% each. WSLs were created on bovine enamel blocks and treated with I, IE, or IEM. Sound and untreated enamel surfaces were used as controls (C). Infiltrant PD (%) was determined by Confocal Laser Scanning Microscopy (CLSM, n = 12) analysis. For color change (ΔE00) determination (n = 14), ΔL, Δa, and Δb, half of each sample was kept sound as a reference area. The color was determined with a spectrophotometer. Data were statistically evaluated (p = 0.05). Surface morphology was obtained as a qualitative response variable using 3D CLSM. PD (%) did not differ statistically for I, IE, and IEM (p = 0.780). Groups I and IEM showed similar performance on color change (ΔE00) compared to the control group, while IE exhibited intermediate results, with no significant difference observed between the untreated, I, and IEM groups (p < 0.001). IEM promoted the masking of the WSL color without interfering with the PD.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.