Molecular Mechanism During Mycelium Subculture Degeneration of Volvariella volvacea.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY Journal of Fungi Pub Date : 2024-12-25 DOI:10.3390/jof11010007
Lidan Feng, Lujuan Wang, Yuanxi Lei, Jie Li, Fengyun Zhao
{"title":"Molecular Mechanism During Mycelium Subculture Degeneration of <i>Volvariella volvacea</i>.","authors":"Lidan Feng, Lujuan Wang, Yuanxi Lei, Jie Li, Fengyun Zhao","doi":"10.3390/jof11010007","DOIUrl":null,"url":null,"abstract":"<p><p>Periodic mycelial subculture is a method commonly used for the storage of edible mushrooms, but excessive subculturing can lead to the degeneration of strains. In this study, the <i>Volvariella volvacea</i> strain V971(M0) was successively subcultured on PDA medium every 4 days, and one generation of strains was preserved every 4 months. Thus, five generations of subcultured strains (M1-M5) were obtained after 20 months of mycelial subculturing, their production traits were determined, and transcriptomic analysis was performed using RNA-seq; the differentially expressed genes were verified via RT-qPCR. The results showed that as the number of subcultures increased, the diameter of the mycelium and biological efficiency gradually decreased; in addition, the time in which the primordium formed increased and the production cycle was lengthened, while strains M4 and M5 lacked the ability to produce fruiting bodies. There were 245 differentially expressed genes between the M1-M5 and M0 strains, while the highest number of differentially expressed genes was between M3 and M0, at 1439; the smallest number of differentially expressed genes was between M2 and M0, at 959. GO enrichment analysis showed that the differentially expressed genes were mainly enriched in metabolic processes, organelle components, and catalytic activities. KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in metabolic pathways. The further annotation of differentially expressed genes showed that 39, 24, and 24 differentially expressed genes were related to substrate degradation, amino acid synthesis and metabolism, and reactive oxygen species metabolism, respectively. The downregulation of the related differentially expressed genes would lead to the excessive accumulation of reactive oxygen species, inhibit nutrient absorption and energy acquisition, and lead to the degradation of <i>V. volvacea</i>. These findings could form a theoretical basis for the degeneration mechanism of <i>V. volvacea,</i> and also provide a basis for the molecular function study of the genes related to strain degradation.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11010007","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Periodic mycelial subculture is a method commonly used for the storage of edible mushrooms, but excessive subculturing can lead to the degeneration of strains. In this study, the Volvariella volvacea strain V971(M0) was successively subcultured on PDA medium every 4 days, and one generation of strains was preserved every 4 months. Thus, five generations of subcultured strains (M1-M5) were obtained after 20 months of mycelial subculturing, their production traits were determined, and transcriptomic analysis was performed using RNA-seq; the differentially expressed genes were verified via RT-qPCR. The results showed that as the number of subcultures increased, the diameter of the mycelium and biological efficiency gradually decreased; in addition, the time in which the primordium formed increased and the production cycle was lengthened, while strains M4 and M5 lacked the ability to produce fruiting bodies. There were 245 differentially expressed genes between the M1-M5 and M0 strains, while the highest number of differentially expressed genes was between M3 and M0, at 1439; the smallest number of differentially expressed genes was between M2 and M0, at 959. GO enrichment analysis showed that the differentially expressed genes were mainly enriched in metabolic processes, organelle components, and catalytic activities. KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in metabolic pathways. The further annotation of differentially expressed genes showed that 39, 24, and 24 differentially expressed genes were related to substrate degradation, amino acid synthesis and metabolism, and reactive oxygen species metabolism, respectively. The downregulation of the related differentially expressed genes would lead to the excessive accumulation of reactive oxygen species, inhibit nutrient absorption and energy acquisition, and lead to the degradation of V. volvacea. These findings could form a theoretical basis for the degeneration mechanism of V. volvacea, and also provide a basis for the molecular function study of the genes related to strain degradation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity. Fungal Biocontrol Agents in the Management of Postharvest Losses of Fresh Produce-A Comprehensive Review. A Chromosome-Scale Genome of Trametes versicolor and Transcriptome-Based Screening for Light-Induced Genes That Promote Triterpene Biosynthesis. Four New or Newly Recorded Species from Freshwater Habitats in Jiangxi Province, China. Influence of Drying Methods on the Morphological Features, Microstructural Properties, and Antioxidant Performance of Floccularia luteovirens: A Metabolomic Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1