Ahmed Haj Hamdan, Sm Abu Saleah, Daewoon Seong, Naresh Kumar Ravichandran, Ruchire Eranga Wijesinghe, Sangyeob Han, Jeehyun Kim, Mansik Jeon, Hyo-Sang Park
{"title":"Three-Dimensional Assessment of Dental Enamel Microcrack Progression After Orthodontic Bracket Debonding Using Optical Coherence Tomography.","authors":"Ahmed Haj Hamdan, Sm Abu Saleah, Daewoon Seong, Naresh Kumar Ravichandran, Ruchire Eranga Wijesinghe, Sangyeob Han, Jeehyun Kim, Mansik Jeon, Hyo-Sang Park","doi":"10.3390/jfb16010007","DOIUrl":null,"url":null,"abstract":"<p><p>The current study aimed to quantify the length progression of enamel microcracks (EMCs) after debonding metal and ceramic brackets, implementing OCT as a diagnostic tool. The secondary objectives included a three-dimensional assessment of EMC width and depth and the formation of new EMCs. OCT imaging was performed on 16 extracted human premolars before bonding and after debonding. Debonding was conducted with a universal Instron machine, with ARI values recorded. Additionally, 2D and 3D OCT images were employed to detect EMC formation and progression. Enface images quantified the length, width, and number of EMCs, and the length and width were analyzed using Image J (1.54f) and MATLAB (R2014b), respectively. Sagittal cross-sectional images were used for EMC depth analysis. A paired <i>t</i>-test showed significant differences in the length, width, and number of EMCs after debonding (<i>p</i>-value < 0.05), while the Wilcoxon non-parametric test indicated significant EMC depth changes (<i>p</i>-value < 0.05). No significant results were identified for the EMC number in ceramic brackets and EMC depth in metal brackets. Three-dimensional OCT imaging monitored existing EMCs at higher risk of progression and detected new EMCs following orthodontic bracket debonding. This study provides novel insights into EMC progression regarding the length, width, depth, and number after debonding.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16010007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current study aimed to quantify the length progression of enamel microcracks (EMCs) after debonding metal and ceramic brackets, implementing OCT as a diagnostic tool. The secondary objectives included a three-dimensional assessment of EMC width and depth and the formation of new EMCs. OCT imaging was performed on 16 extracted human premolars before bonding and after debonding. Debonding was conducted with a universal Instron machine, with ARI values recorded. Additionally, 2D and 3D OCT images were employed to detect EMC formation and progression. Enface images quantified the length, width, and number of EMCs, and the length and width were analyzed using Image J (1.54f) and MATLAB (R2014b), respectively. Sagittal cross-sectional images were used for EMC depth analysis. A paired t-test showed significant differences in the length, width, and number of EMCs after debonding (p-value < 0.05), while the Wilcoxon non-parametric test indicated significant EMC depth changes (p-value < 0.05). No significant results were identified for the EMC number in ceramic brackets and EMC depth in metal brackets. Three-dimensional OCT imaging monitored existing EMCs at higher risk of progression and detected new EMCs following orthodontic bracket debonding. This study provides novel insights into EMC progression regarding the length, width, depth, and number after debonding.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.