Emerson Koji Uehara, Gustavo Castro de Lima, Janaina de Cassia Orlandi Sardi, Luciene Cristina de Figueiredo, Jamil Awad Shibli, Thabet Asbi, Doron Haim, José Augusto Rodrigues
{"title":"Next-Generation Dental Materials: Exploring Bacterial Biofilm Formation on 3D-Printable Resin-Based Composites.","authors":"Emerson Koji Uehara, Gustavo Castro de Lima, Janaina de Cassia Orlandi Sardi, Luciene Cristina de Figueiredo, Jamil Awad Shibli, Thabet Asbi, Doron Haim, José Augusto Rodrigues","doi":"10.3390/jfb16010012","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the microbial growth profile of subgingival multispecies biofilm on 3D-printable resin-based composites (PRBCs). A 96-well cell plate cultivated a 39-species biofilm associated with periodontitis over 7 days. Cylindrical specimens with 12 mm high and 3 mm diameters were prepared by the PRBC group (Cosmos Temp-Yller; Prizma 3D Bio Crown; Prizma 3D Bio Prov) and an acrylic resin as control. Further, these specimens were immersed in the well plate to allow biofilm formation. After growing for 7 days, the metabolic biofilm activity was evaluated by colorimetric assay and the microbial profile by DNA-DNA hybridization. Kruskal-Wallis and Mann-Whitney tests evaluated each bacteria count and complex group. A greater biofilm formation was observed on PRBC groups than on acrylic resin. The microbiological profile of PRBC was associated with a less pathogenic biofilm, with an absence of a red complex. Acrylic resin showed low biofilm growth, but the biofilm profile was related to periodontal disease, characterized by red-complex bacteria. The selection of PRBC may contribute more effectively to maintaining periodontal health than acrylic resin.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16010012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluated the microbial growth profile of subgingival multispecies biofilm on 3D-printable resin-based composites (PRBCs). A 96-well cell plate cultivated a 39-species biofilm associated with periodontitis over 7 days. Cylindrical specimens with 12 mm high and 3 mm diameters were prepared by the PRBC group (Cosmos Temp-Yller; Prizma 3D Bio Crown; Prizma 3D Bio Prov) and an acrylic resin as control. Further, these specimens were immersed in the well plate to allow biofilm formation. After growing for 7 days, the metabolic biofilm activity was evaluated by colorimetric assay and the microbial profile by DNA-DNA hybridization. Kruskal-Wallis and Mann-Whitney tests evaluated each bacteria count and complex group. A greater biofilm formation was observed on PRBC groups than on acrylic resin. The microbiological profile of PRBC was associated with a less pathogenic biofilm, with an absence of a red complex. Acrylic resin showed low biofilm growth, but the biofilm profile was related to periodontal disease, characterized by red-complex bacteria. The selection of PRBC may contribute more effectively to maintaining periodontal health than acrylic resin.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.