Optimization of Extraction Process, Structural Characterization, and Antioxidant and Hypoglycemic Activity Evaluation of Polysaccharides From the Medicinal and Edible Plant: Cistanche deserticola Ma.

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Phytochemical Analysis Pub Date : 2025-01-23 DOI:10.1002/pca.3512
Tao-Tao Xue, Dong-Xuan Zheng, Qiang Hou, Li-Mei Wen, Bao-Juan Wang, Ruo-Yu Geng, Qian-Qian Wang, Wu Dai, Li-Ying Tian, Sheng-Qi He, Jian-Hua Yang, Jun-Ping Hu
{"title":"Optimization of Extraction Process, Structural Characterization, and Antioxidant and Hypoglycemic Activity Evaluation of Polysaccharides From the Medicinal and Edible Plant: Cistanche deserticola Ma.","authors":"Tao-Tao Xue, Dong-Xuan Zheng, Qiang Hou, Li-Mei Wen, Bao-Juan Wang, Ruo-Yu Geng, Qian-Qian Wang, Wu Dai, Li-Ying Tian, Sheng-Qi He, Jian-Hua Yang, Jun-Ping Hu","doi":"10.1002/pca.3512","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cistanche deserticola Ma (CD), an edible and medicinal plant native to Xinjiang, Inner Mongolia, and Gansu in China, is rich in bioactive polysaccharides known for their health-promoting properties. The polysaccharides of C. deserticola (CDPs) have been shown to possess a range of beneficial activities, including immunomodulatory, anti-aging, antioxidant, and anti-osteoporosis effects.</p><p><strong>Objective: </strong>This study seeks to identify the optimal conditions for extracting CDPs using hot water. Additionally, it aims to evaluate their chemical properties, antioxidant activity, hypoglycemic effects, and cytotoxicity. The findings will provide a theoretical foundation for the potential use of CDPs in functional foods and pharmaceuticals.</p><p><strong>Methodology: </strong>The study employed response surface methodology to optimize the hot water extraction conditions for CDPs. The extracted CDPs were characterized using a range of chemical, spectroscopic, and instrumental analyses. Furthermore, their antioxidant activity, hypoglycemic effects, and cytotoxicity were evaluated through relevant assays to assess their potential health benefits.</p><p><strong>Results: </strong>Under optimal conditions, the yield of CDPs was 45.85% ± 1.91%. CDPs were identified as acidic heteropolysaccharides with a wide molecular weight distribution, ranging from 0.3 to 128.2 kDa. They were composed primarily of glucose (51.21%), arabinose (32.86%), galactose (17.88%), and smaller amounts of galacturonic acid (4.66%), rhamnose (1.85%), mannose (1.32%), glucosamine hydrochloride (1.08%), and xylose (0.56%). Antioxidant assays demonstrated that CDPs exhibited significant free radical scavenging activity, metal ion chelation, and reducing power. Additionally, CDPs inhibited α-glucosidase and α-amylase in vitro through a mixed-type mechanism, as well as static fluorescence quenching. Cytotoxicity assays showed that CDPs were nontoxic to L02 and AML12 cells.</p><p><strong>Conclusion: </strong>This study offers a theoretical foundation for the potential use of CDPs in functional foods and pharmaceuticals and provides valuable insights for the development of new antioxidant and hypoglycemic agents from natural sources.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3512","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Cistanche deserticola Ma (CD), an edible and medicinal plant native to Xinjiang, Inner Mongolia, and Gansu in China, is rich in bioactive polysaccharides known for their health-promoting properties. The polysaccharides of C. deserticola (CDPs) have been shown to possess a range of beneficial activities, including immunomodulatory, anti-aging, antioxidant, and anti-osteoporosis effects.

Objective: This study seeks to identify the optimal conditions for extracting CDPs using hot water. Additionally, it aims to evaluate their chemical properties, antioxidant activity, hypoglycemic effects, and cytotoxicity. The findings will provide a theoretical foundation for the potential use of CDPs in functional foods and pharmaceuticals.

Methodology: The study employed response surface methodology to optimize the hot water extraction conditions for CDPs. The extracted CDPs were characterized using a range of chemical, spectroscopic, and instrumental analyses. Furthermore, their antioxidant activity, hypoglycemic effects, and cytotoxicity were evaluated through relevant assays to assess their potential health benefits.

Results: Under optimal conditions, the yield of CDPs was 45.85% ± 1.91%. CDPs were identified as acidic heteropolysaccharides with a wide molecular weight distribution, ranging from 0.3 to 128.2 kDa. They were composed primarily of glucose (51.21%), arabinose (32.86%), galactose (17.88%), and smaller amounts of galacturonic acid (4.66%), rhamnose (1.85%), mannose (1.32%), glucosamine hydrochloride (1.08%), and xylose (0.56%). Antioxidant assays demonstrated that CDPs exhibited significant free radical scavenging activity, metal ion chelation, and reducing power. Additionally, CDPs inhibited α-glucosidase and α-amylase in vitro through a mixed-type mechanism, as well as static fluorescence quenching. Cytotoxicity assays showed that CDPs were nontoxic to L02 and AML12 cells.

Conclusion: This study offers a theoretical foundation for the potential use of CDPs in functional foods and pharmaceuticals and provides valuable insights for the development of new antioxidant and hypoglycemic agents from natural sources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytochemical Analysis
Phytochemical Analysis 生物-分析化学
CiteScore
6.00
自引率
6.10%
发文量
88
审稿时长
1.7 months
期刊介绍: Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.
期刊最新文献
Optimization of Extraction Process, Structural Characterization, and Antioxidant and Hypoglycemic Activity Evaluation of Polysaccharides From the Medicinal and Edible Plant: Cistanche deserticola Ma. A Validated Method for Identification and Quantification of Anthocyanins in Different Black Rice (Oryza sativa L.) Varieties Using High-Performance Thin-Layer Chromatography (HPTLC). Comparison of Vegetable Waste Byproducts of Selected Cultivars of Foeniculum vulgare Mill. by an Integrated LC-(HR)MS and 1H-NMR-Based Metabolomics Approach. Study on Quality Evaluation of Tibetan Dracocephali tangutici Herba Based on DNA Barcode and HPLC Fingerprinting. Untargeted Characterization and Biological Activity of Amazonian Aqueous Stem Bark Extracts by Liquid and Gas Chromatography-Mass Spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1