Dihydrotanshinone I Attenuates Diet-Induced Nonalcoholic Fatty Liver Disease via Up-Regulation of IRG1.

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL Phytotherapy Research Pub Date : 2025-01-24 DOI:10.1002/ptr.8443
Yang Xiang, Ge Kuang, Xia Gong, Huang Xie, Yan Lin, Xijian Zhang, Zhongpei Chen, Jingyuan Wan, Zhenhan Li
{"title":"Dihydrotanshinone I Attenuates Diet-Induced Nonalcoholic Fatty Liver Disease via Up-Regulation of IRG1.","authors":"Yang Xiang, Ge Kuang, Xia Gong, Huang Xie, Yan Lin, Xijian Zhang, Zhongpei Chen, Jingyuan Wan, Zhenhan Li","doi":"10.1002/ptr.8443","DOIUrl":null,"url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, but effective therapeutic drugs are still lacking. Dihydrotanshinone I (DHTS), a natural product isolated from Salvia miltiorrhiza, has been shown to have ameliorative effects on NAFLD. The aim of this study was to investigate the hepatoprotective effect of DHTS on NAFLD and its mechanism. A model of NAFLD and DHTS treatment was established using a Western diet to observe the effect of DHTS on NAFLD, which were detected by immunohistochemical, immunofluorescence, and other experiments. The mechanism was further explored by constructing immune responsive gene 1 (IRG1) knockout mice, RNA sequence, and molecular docking. The results revealed that DHTS significantly improved diet-induced metabolic disorders in mice, notably alleviating liver inflammation, oxidative stress, and fibrosis. Further analysis revealed that the intervention of DHTS was associated with the activation of IRG1. Subsequent experiments confirmed that IRG1 gene deletion reversed the above protective effects of DHTS in NAFLD. Mechanistically, DHTS enhanced the antioxidant nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway through IRG1/itaconate and blocked the oxidative stress response in the liver. In addition, DHTS also inhibited the activation of NACHT-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome via IRG1/itaconate, blocking the inflammatory amplification effect in the liver. The study suggests that DHTS may be a potential drug for the treatment of NAFLD, which exerts protective regulatory effects mainly through the IRG1/itaconate molecular pathway.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8443","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, but effective therapeutic drugs are still lacking. Dihydrotanshinone I (DHTS), a natural product isolated from Salvia miltiorrhiza, has been shown to have ameliorative effects on NAFLD. The aim of this study was to investigate the hepatoprotective effect of DHTS on NAFLD and its mechanism. A model of NAFLD and DHTS treatment was established using a Western diet to observe the effect of DHTS on NAFLD, which were detected by immunohistochemical, immunofluorescence, and other experiments. The mechanism was further explored by constructing immune responsive gene 1 (IRG1) knockout mice, RNA sequence, and molecular docking. The results revealed that DHTS significantly improved diet-induced metabolic disorders in mice, notably alleviating liver inflammation, oxidative stress, and fibrosis. Further analysis revealed that the intervention of DHTS was associated with the activation of IRG1. Subsequent experiments confirmed that IRG1 gene deletion reversed the above protective effects of DHTS in NAFLD. Mechanistically, DHTS enhanced the antioxidant nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway through IRG1/itaconate and blocked the oxidative stress response in the liver. In addition, DHTS also inhibited the activation of NACHT-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome via IRG1/itaconate, blocking the inflammatory amplification effect in the liver. The study suggests that DHTS may be a potential drug for the treatment of NAFLD, which exerts protective regulatory effects mainly through the IRG1/itaconate molecular pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
期刊最新文献
Gastrodin Ameliorates Tau Pathology and BBB Dysfunction in 3xTg-AD Transgenic Mice by Regulating the ADRA1/NF-κB/NLRP3 Pathway to Reduce Neuroinflammation. Multifaceted Therapeutic Impacts of Cucurbitacin B: Recent Evidences From Preclinical Studies. Aurantio-Obtusin Regulates Gut Microbiota and Serum Metabolism to Alleviate High-Fat Diet-Induced Obesity-Associated Non-Alcoholic Fatty Liver Disease in Mice. Toosendanin Induces Cell Cycle Arrest and Apoptosis to Suppress Diffuse Large B-Cell Lymphoma Growth by Inhibiting PI3Kα/β and PLK1 Signaling. RETRACTION: Epigallocatechin-3-Gallate Enhances Differentiation of Acute Promyelocytic Leukemia Cells via Inhibition of PML-RARα and HDAC1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1