Acute lipid droplet accumulation induced by the inhibition of the phospholipase DDHD2 does not affect the level, solubility, or phosphoserine-129 status of α-synuclein.
Magdalena M Bolsinger, Tim E Moors, Lisa Brontesi, Silke Nuber, Ulf Dettmer, Nagendran Ramalingam
{"title":"Acute lipid droplet accumulation induced by the inhibition of the phospholipase DDHD2 does not affect the level, solubility, or phosphoserine-129 status of α-synuclein.","authors":"Magdalena M Bolsinger, Tim E Moors, Lisa Brontesi, Silke Nuber, Ulf Dettmer, Nagendran Ramalingam","doi":"10.1007/s11011-025-01534-9","DOIUrl":null,"url":null,"abstract":"<p><p>α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology. Some of these works postulate a physical interaction between αS and lipid droplets (LDs), but further clarity is needed, not least because typically exogenous αS and/or heterologous systems have been studied. Here, we investigated the effects of acute LD accumulation on endogenous wild-type αS in primary rat cortical neurons. To induce robust LD accumulation within hours, we inhibited the neuronal triacylglycerol hydrolase DDHD2, a phospholipase, using the compound KLH45. KLH45-induced LD accumulation did not affect total levels, phosphoserine-129 status, or solubility of αS, and no co-localization between LDs and αS was observed under these conditions. These findings suggest that a \"second hit\" and/or a specific LD lipid composition may be necessary for lipid excess to affect αS homeostasis. Our work thus contributes to the debate on αS structure and lipid interaction.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 1","pages":"111"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01534-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology. Some of these works postulate a physical interaction between αS and lipid droplets (LDs), but further clarity is needed, not least because typically exogenous αS and/or heterologous systems have been studied. Here, we investigated the effects of acute LD accumulation on endogenous wild-type αS in primary rat cortical neurons. To induce robust LD accumulation within hours, we inhibited the neuronal triacylglycerol hydrolase DDHD2, a phospholipase, using the compound KLH45. KLH45-induced LD accumulation did not affect total levels, phosphoserine-129 status, or solubility of αS, and no co-localization between LDs and αS was observed under these conditions. These findings suggest that a "second hit" and/or a specific LD lipid composition may be necessary for lipid excess to affect αS homeostasis. Our work thus contributes to the debate on αS structure and lipid interaction.
期刊介绍:
Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.