Relationship of perfluoroalkyl chemicals with chronic obstructive pulmonary disease: A cross-sectional study.

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Toxicology and Industrial Health Pub Date : 2025-01-24 DOI:10.1177/07482337251315216
Xuefang Li, Zhijun Li, Jian Ye, Wu Ye
{"title":"Relationship of perfluoroalkyl chemicals with chronic obstructive pulmonary disease: A cross-sectional study.","authors":"Xuefang Li, Zhijun Li, Jian Ye, Wu Ye","doi":"10.1177/07482337251315216","DOIUrl":null,"url":null,"abstract":"<p><p>Perfluoroalkyl chemicals are one of the most stable substances in industry and have become ubiquitous contaminants owing to their persistence in the environment. This study enrolled 1,953 participants aged ≥40 years old using data from the National Health and Nutrition Examination Survey (NHANES). We selected four perfluoroalkyl chemicals with a detection frequency of more than 80%, including perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS). Multivariate logistic regression was performed to determine the relationship of serum perfluoroalkyl chemicals with COPD and airflow limitation. We evaluated the interaction between perfluoroalkyl chemicals and lung function using multivariate linear regression analyses. Our results showed that the prevalence of COPD was not significantly related to serum PFHxS, PFNA, PFOA, and PFOS. Airflow limitation was positively linked with serum PFHxS, PFOA, and PFOS. However, these significant differences were not robust after adjustment of all confounders of interest. Serum PFHxS, PFOA, and PFOS were all positively related to the forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF). However, only PFOA remained significantly linked with the FEV1 and FVC after covariate adjustment. These results indicated that there was no significant interaction between exposure to perfluoroalkyl chemicals and the prevalence of COPD. Higher levels of serum PFOA appeared to be related to higher measures of FEV1 and FVC.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"7482337251315216"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and Industrial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07482337251315216","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluoroalkyl chemicals are one of the most stable substances in industry and have become ubiquitous contaminants owing to their persistence in the environment. This study enrolled 1,953 participants aged ≥40 years old using data from the National Health and Nutrition Examination Survey (NHANES). We selected four perfluoroalkyl chemicals with a detection frequency of more than 80%, including perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS). Multivariate logistic regression was performed to determine the relationship of serum perfluoroalkyl chemicals with COPD and airflow limitation. We evaluated the interaction between perfluoroalkyl chemicals and lung function using multivariate linear regression analyses. Our results showed that the prevalence of COPD was not significantly related to serum PFHxS, PFNA, PFOA, and PFOS. Airflow limitation was positively linked with serum PFHxS, PFOA, and PFOS. However, these significant differences were not robust after adjustment of all confounders of interest. Serum PFHxS, PFOA, and PFOS were all positively related to the forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF). However, only PFOA remained significantly linked with the FEV1 and FVC after covariate adjustment. These results indicated that there was no significant interaction between exposure to perfluoroalkyl chemicals and the prevalence of COPD. Higher levels of serum PFOA appeared to be related to higher measures of FEV1 and FVC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全氟烷基化学品是工业中最稳定的物质之一,由于其在环境中的持久性,已成为无处不在的污染物。这项研究利用美国国家健康与营养调查(NHANES)的数据,招募了 1953 名年龄≥40 岁的参与者。我们选择了检测频率超过 80% 的四种全氟烷基化学品,包括全氟己烷磺酸 (PFHxS)、全氟壬酸 (PFNA)、全氟辛酸 (PFOA) 和全氟辛烷磺酸 (PFOS)。为了确定血清全氟烷基化学物质与慢性阻塞性肺病和气流受限的关系,我们进行了多变量逻辑回归。我们使用多元线性回归分析评估了全氟烷基化学物质与肺功能之间的交互作用。结果表明,慢性阻塞性肺病的发病率与血清中的全氟己烷磺酸、全氟萘、全氟辛酸和全氟辛烷磺酸无明显关系。气流受限与血清 PFHxS、PFOA 和 PFOS 呈正相关。然而,在对所有相关混杂因素进行调整后,这些显著差异并不稳固。血清 PFHxS、PFOA 和 PFOS 均与 1 秒钟用力呼气量(FEV1)、用力肺活量(FVC)和呼气峰值流量(PEF)呈正相关。然而,经过协变量调整后,只有全氟辛烷磺酸仍与 FEV1 和 FVC 显著相关。这些结果表明,接触全氟烷基化学品与慢性阻塞性肺病发病率之间没有明显的相互作用。血清中 PFOA 水平越高,FEV1 和 FVC 的测量值就越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
72
审稿时长
4 months
期刊介绍: Toxicology & Industrial Health is a journal dedicated to reporting results of basic and applied toxicological research with direct application to industrial/occupational health. Such research includes the fields of genetic and cellular toxicology and risk assessment associated with hazardous wastes and groundwater.
期刊最新文献
Oxidative DNA damage of lambda-cyhalothrin in model vertebrate organism. Transcriptome analysis reveals the molecular mechanisms of neonicotinoid acetamiprid in Leydig cells. Perfluorooctane sulfonate causes HK-2 cell injury through ferroptosis and endoplasmic reticulum stress pathways. Wnt5a promotes Kupffer cell activation in trichloroethylene-induced immune liver injury. Metabolomics reveals that phosphatidylethanolamine can alleviate the toxicity of silica nanoparticles in human lung A549 cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1