Protocol to generate dual-target compounds using a transformer chemical language model.

IF 1.3 Q4 BIOCHEMICAL RESEARCH METHODS STAR Protocols Pub Date : 2025-03-21 Epub Date: 2025-01-23 DOI:10.1016/j.xpro.2024.103584
Sanjana Srinivasan, Jürgen Bajorath
{"title":"Protocol to generate dual-target compounds using a transformer chemical language model.","authors":"Sanjana Srinivasan, Jürgen Bajorath","doi":"10.1016/j.xpro.2024.103584","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we present a protocol to generate dual-target compounds (DT-CPDs) interacting with two distinct target proteins using a transformer-based chemical language model. We describe steps for installing software, preparing data, and pre-training the model on pairs of single-target compounds (ST-CPDs), which bind to an individual protein, and DT-CPDs. We then detail procedures for assembling ST- and corresponding DT-CPD data for specific protein pairs and evaluating the model's performance on hold-out test sets. For complete details on the use and execution of this protocol, please refer to Srinivasan and Bajorath.<sup>1</sup>.</p>","PeriodicalId":34214,"journal":{"name":"STAR Protocols","volume":"6 1","pages":"103584"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STAR Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xpro.2024.103584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we present a protocol to generate dual-target compounds (DT-CPDs) interacting with two distinct target proteins using a transformer-based chemical language model. We describe steps for installing software, preparing data, and pre-training the model on pairs of single-target compounds (ST-CPDs), which bind to an individual protein, and DT-CPDs. We then detail procedures for assembling ST- and corresponding DT-CPD data for specific protein pairs and evaluating the model's performance on hold-out test sets. For complete details on the use and execution of this protocol, please refer to Srinivasan and Bajorath.1.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用转换化学语言模型生成双目标化合物的协议。
在这里,我们提出了一种使用基于转换器的化学语言模型生成与两种不同靶蛋白相互作用的双靶化合物(DT-CPDs)的方案。我们描述了安装软件、准备数据和对单目标化合物(st - cpd)和dt - cpd对模型进行预训练的步骤。st - cpd与单个蛋白质结合。然后,我们详细介绍了组装特定蛋白质对的ST-和相应的DT-CPD数据的程序,并评估了模型在保留测试集上的性能。有关使用和执行本协议的完整细节,请参阅Srinivasan和bajorath。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
STAR Protocols
STAR Protocols Biochemistry, Genetics and Molecular Biology-General Biochemistry, Genetics and Molecular Biology
CiteScore
2.00
自引率
0.00%
发文量
789
审稿时长
10 weeks
期刊介绍:
期刊最新文献
Protocol for the differentiation of induced pluripotent stem cells into retinal pigment epithelial cells. Protocol to investigate fibroblastic reticular cell-immune cell interaction in human lung cancer. Protocol for endolysosomal proteomics in goat atrial tissue using a refined density-gradient approach. Protocol for structural analysis of amyloid fibrils using hydrogen-deuterium exchange mass spectrometry. Protocol for preparing natural peptidoglycan nanoparticles and purifying plant-derived antigens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1