Fabrication with Characterization of Single-Walled Carbon Nanotube Thin Film Transistor (CNT-TFT) by Spin Coating Method for Flat Panel Display.

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Recent Patents on Nanotechnology Pub Date : 2025-01-23 DOI:10.2174/0118722105318225241021042955
Vijai Meyyappan Moorthy, R Venkatesan, Viranjay M Srivastava
{"title":"Fabrication with Characterization of Single-Walled Carbon Nanotube Thin Film Transistor (CNT-TFT) by Spin Coating Method for Flat Panel Display.","authors":"Vijai Meyyappan Moorthy, R Venkatesan, Viranjay M Srivastava","doi":"10.2174/0118722105318225241021042955","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Thin Film Transistors (TFTs) are increasingly prevalent electrical components in display products, ranging from smartphones to diagonal flat panel TVs. The limitations in existing TFT technologies, such as high-temperature processing, carrier mobility, lower ON/OFF ratio, device mobility, and thermal stability, result in the search for new semiconductor materials with superior properties.</p><p><strong>Objective: </strong>The main objective of this present work is to fabrícate the efficient Single-Walled Carbon Nanotube Thin Film Transistor (TFT) for flat panel display.</p><p><strong>Methods: </strong>Carbon Nano-Tubes (CNTs) are a promising semiconductor material for TFT devices due to their one-dimensional structure and exceptional characteristics. In this research work, the CNTTFTs have been fabricated using nano-fabrication techniques with a spin process. The fabricated devices have been characterized for structural, morphological, and electrical characteristics.</p><p><strong>Results: </strong>The 20 μm channel length and 30 μm channel width fabricated device produces about 1.3 nA, which lies in the practical range of operating TFTs reported previously. Compared to reported patents and published works, this demonstrates a significant improvement.</p><p><strong>Conclusion: </strong>Further guidelines and limitations of this fabrication method are also discussed for future efficient device fabrication.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105318225241021042955","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Thin Film Transistors (TFTs) are increasingly prevalent electrical components in display products, ranging from smartphones to diagonal flat panel TVs. The limitations in existing TFT technologies, such as high-temperature processing, carrier mobility, lower ON/OFF ratio, device mobility, and thermal stability, result in the search for new semiconductor materials with superior properties.

Objective: The main objective of this present work is to fabrícate the efficient Single-Walled Carbon Nanotube Thin Film Transistor (TFT) for flat panel display.

Methods: Carbon Nano-Tubes (CNTs) are a promising semiconductor material for TFT devices due to their one-dimensional structure and exceptional characteristics. In this research work, the CNTTFTs have been fabricated using nano-fabrication techniques with a spin process. The fabricated devices have been characterized for structural, morphological, and electrical characteristics.

Results: The 20 μm channel length and 30 μm channel width fabricated device produces about 1.3 nA, which lies in the practical range of operating TFTs reported previously. Compared to reported patents and published works, this demonstrates a significant improvement.

Conclusion: Further guidelines and limitations of this fabrication method are also discussed for future efficient device fabrication.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Recent Patents on Nanotechnology
Recent Patents on Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.70
自引率
10.00%
发文量
50
审稿时长
3 months
期刊介绍: Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.
期刊最新文献
Fabrication with Characterization of Single-Walled Carbon Nanotube Thin Film Transistor (CNT-TFT) by Spin Coating Method for Flat Panel Display. Development of Stabilized and Aqueous Dissolvable Nanosuspension Encompassing BCS Class IV Drug via Optimization of Process and Formulation Variables. Research on Controllable Synthesis and Growth Mechanism of Sodium Vanadium Fluorophosphate Nanosheets. Progress on One-dimensional Vanadium Pentoxide-based Nanomaterials for Advanced Energy Storage ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), China. Design Optimization and Evaluation of Patented Fast-Dissolving Oral Thin Film of Ambrisentan for the Treatment of Hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1