Enhanced Disc Herniation Classification Using Grey Wolf Optimization Based on Hybrid Feature Extraction and Deep Learning Methods.

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Tomography Pub Date : 2024-12-26 DOI:10.3390/tomography11010001
Yasemin Sarı, Nesrin Aydın Atasoy
{"title":"Enhanced Disc Herniation Classification Using Grey Wolf Optimization Based on Hybrid Feature Extraction and Deep Learning Methods.","authors":"Yasemin Sarı, Nesrin Aydın Atasoy","doi":"10.3390/tomography11010001","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the increasing number of people working at computers in professional settings, the incidence of lumbar disc herniation is increasing.</p><p><strong>Background/objectives: </strong>The early diagnosis and treatment of lumbar disc herniation is much more likely to yield favorable results, allowing the hernia to be treated before it develops further. The aim of this study was to classify lumbar disc herniations in a computer-aided, fully automated manner using magnetic resonance images (MRIs).</p><p><strong>Methods: </strong>This study presents a hybrid method integrating residual network (ResNet50), grey wolf optimization (GWO), and machine learning classifiers such as multi-layer perceptron (MLP) and support vector machine (SVM) to improve classification performance. The proposed approach begins with feature extraction using ResNet50, a deep convolutional neural network known for its robust feature representation capabilities. ResNet50's residual connections allow for effective training and high-quality feature extraction from input images. Following feature extraction, the GWO algorithm, inspired by the social hierarchy and hunting behavior of grey wolves, is employed to optimize the feature set by selecting the most relevant features. Finally, the optimized feature set is fed into machine learning classifiers (MLP and SVM) for classification. The use of various activation functions (e.g., ReLU, identity, logistic, and tanh) in MLP and various kernel functions (e.g., linear, rbf, sigmoid, and polynomial) in SVM allows for a thorough evaluation of the classifiers' performance.</p><p><strong>Results: </strong>The proposed methodology demonstrates significant improvements in metrics such as accuracy, precision, recall, and F1 score, outperforming traditional approaches in several cases. These results highlight the effectiveness of combining deep learning-based feature extraction with optimization and machine learning classifiers.</p><p><strong>Conclusions: </strong>Compared to other methods, such as capsule networks (CapsNet), EfficientNetB6, and DenseNet169, the proposed ResNet50-GWO-SVM approach achieved superior performance across all metrics, including accuracy, precision, recall, and F1 score, demonstrating its robustness and effectiveness in classification tasks.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11010001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the increasing number of people working at computers in professional settings, the incidence of lumbar disc herniation is increasing.

Background/objectives: The early diagnosis and treatment of lumbar disc herniation is much more likely to yield favorable results, allowing the hernia to be treated before it develops further. The aim of this study was to classify lumbar disc herniations in a computer-aided, fully automated manner using magnetic resonance images (MRIs).

Methods: This study presents a hybrid method integrating residual network (ResNet50), grey wolf optimization (GWO), and machine learning classifiers such as multi-layer perceptron (MLP) and support vector machine (SVM) to improve classification performance. The proposed approach begins with feature extraction using ResNet50, a deep convolutional neural network known for its robust feature representation capabilities. ResNet50's residual connections allow for effective training and high-quality feature extraction from input images. Following feature extraction, the GWO algorithm, inspired by the social hierarchy and hunting behavior of grey wolves, is employed to optimize the feature set by selecting the most relevant features. Finally, the optimized feature set is fed into machine learning classifiers (MLP and SVM) for classification. The use of various activation functions (e.g., ReLU, identity, logistic, and tanh) in MLP and various kernel functions (e.g., linear, rbf, sigmoid, and polynomial) in SVM allows for a thorough evaluation of the classifiers' performance.

Results: The proposed methodology demonstrates significant improvements in metrics such as accuracy, precision, recall, and F1 score, outperforming traditional approaches in several cases. These results highlight the effectiveness of combining deep learning-based feature extraction with optimization and machine learning classifiers.

Conclusions: Compared to other methods, such as capsule networks (CapsNet), EfficientNetB6, and DenseNet169, the proposed ResNet50-GWO-SVM approach achieved superior performance across all metrics, including accuracy, precision, recall, and F1 score, demonstrating its robustness and effectiveness in classification tasks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tomography
Tomography Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍: TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine. Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians. Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.
期刊最新文献
Enhanced Detection of Residual Breast Cancer Post-Excisional Biopsy: Comparative Analysis of Contrast-Enhanced MRI with and Without Diffusion-Weighted Imaging. Comparative Sensitivity of MRI Indices for Myelin Assessment in Spinal Cord Regions. CT Angiography Assessment of Dorsal Pancreatic Artery and Intrapancreatic Arcade Anatomy: Impact on Whipple Surgery Outcomes. Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain. Unraveling the Invisible: Topological Data Analysis as the New Frontier in Radiology's Diagnostic Arsenal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1