Nalan Karunanayake, Lin Lu, Hao Yang, Pengfei Geng, Oguz Akin, Helena Furberg, Lawrence H Schwartz, Binsheng Zhao
{"title":"Dual-Stage AI Model for Enhanced CT Imaging: Precision Segmentation of Kidney and Tumors.","authors":"Nalan Karunanayake, Lin Lu, Hao Yang, Pengfei Geng, Oguz Akin, Helena Furberg, Lawrence H Schwartz, Binsheng Zhao","doi":"10.3390/tomography11010003","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Accurate kidney and tumor segmentation of computed tomography (CT) scans is vital for diagnosis and treatment, but manual methods are time-consuming and inconsistent, highlighting the value of AI automation. This study develops a fully automated AI model using vision transformers (ViTs) and convolutional neural networks (CNNs) to detect and segment kidneys and kidney tumors in Contrast-Enhanced (CECT) scans, with a focus on improving sensitivity for small, indistinct tumors.</p><p><strong>Methods: </strong>The segmentation framework employs a ViT-based model for the kidney organ, followed by a 3D UNet model with enhanced connections and attention mechanisms for tumor detection and segmentation. Two CECT datasets were used: a public dataset (KiTS23: 489 scans) and a private institutional dataset (Private: 592 scans). The AI model was trained on 389 public scans, with validation performed on the remaining 100 scans and external validation performed on all 592 private scans. Tumors were categorized by TNM staging as small (≤4 cm) (KiTS23: 54%, Private: 41%), medium (>4 cm to ≤7 cm) (KiTS23: 24%, Private: 35%), and large (>7 cm) (KiTS23: 22%, Private: 24%) for detailed evaluation.</p><p><strong>Results: </strong>Kidney and kidney tumor segmentations were evaluated against manual annotations as the reference standard. The model achieved a Dice score of 0.97 ± 0.02 for kidney organ segmentation. For tumor detection and segmentation on the KiTS23 dataset, the sensitivities and average false-positive rates per patient were as follows: 0.90 and 0.23 for small tumors, 1.0 and 0.08 for medium tumors, and 0.96 and 0.04 for large tumors. The corresponding Dice scores were 0.84 ± 0.11, 0.89 ± 0.07, and 0.91 ± 0.06, respectively. External validation on the private data confirmed the model's effectiveness, achieving the following sensitivities and average false-positive rates per patient: 0.89 and 0.15 for small tumors, 0.99 and 0.03 for medium tumors, and 1.0 and 0.01 for large tumors. The corresponding Dice scores were 0.84 ± 0.08, 0.89 ± 0.08, and 0.92 ± 0.06.</p><p><strong>Conclusions: </strong>The proposed model demonstrates consistent and robust performance in segmenting kidneys and kidney tumors of various sizes, with effective generalization to unseen data. This underscores the model's significant potential for clinical integration, offering enhanced diagnostic precision and reliability in radiological assessments.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11010003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Accurate kidney and tumor segmentation of computed tomography (CT) scans is vital for diagnosis and treatment, but manual methods are time-consuming and inconsistent, highlighting the value of AI automation. This study develops a fully automated AI model using vision transformers (ViTs) and convolutional neural networks (CNNs) to detect and segment kidneys and kidney tumors in Contrast-Enhanced (CECT) scans, with a focus on improving sensitivity for small, indistinct tumors.
Methods: The segmentation framework employs a ViT-based model for the kidney organ, followed by a 3D UNet model with enhanced connections and attention mechanisms for tumor detection and segmentation. Two CECT datasets were used: a public dataset (KiTS23: 489 scans) and a private institutional dataset (Private: 592 scans). The AI model was trained on 389 public scans, with validation performed on the remaining 100 scans and external validation performed on all 592 private scans. Tumors were categorized by TNM staging as small (≤4 cm) (KiTS23: 54%, Private: 41%), medium (>4 cm to ≤7 cm) (KiTS23: 24%, Private: 35%), and large (>7 cm) (KiTS23: 22%, Private: 24%) for detailed evaluation.
Results: Kidney and kidney tumor segmentations were evaluated against manual annotations as the reference standard. The model achieved a Dice score of 0.97 ± 0.02 for kidney organ segmentation. For tumor detection and segmentation on the KiTS23 dataset, the sensitivities and average false-positive rates per patient were as follows: 0.90 and 0.23 for small tumors, 1.0 and 0.08 for medium tumors, and 0.96 and 0.04 for large tumors. The corresponding Dice scores were 0.84 ± 0.11, 0.89 ± 0.07, and 0.91 ± 0.06, respectively. External validation on the private data confirmed the model's effectiveness, achieving the following sensitivities and average false-positive rates per patient: 0.89 and 0.15 for small tumors, 0.99 and 0.03 for medium tumors, and 1.0 and 0.01 for large tumors. The corresponding Dice scores were 0.84 ± 0.08, 0.89 ± 0.08, and 0.92 ± 0.06.
Conclusions: The proposed model demonstrates consistent and robust performance in segmenting kidneys and kidney tumors of various sizes, with effective generalization to unseen data. This underscores the model's significant potential for clinical integration, offering enhanced diagnostic precision and reliability in radiological assessments.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.