Protective effects of neutrophil serine protease inhibition against ischemia-reperfusion injury in lung or heart transplantation.

Sevil Korkmaz-Icöz, Gábor Szabó, Artur Gieldon, Patrick P McDonald, Alexey Dashkevich, Ali Önder Yildirim, Brice Korkmaz
{"title":"Protective effects of neutrophil serine protease inhibition against ischemia-reperfusion injury in lung or heart transplantation.","authors":"Sevil Korkmaz-Icöz, Gábor Szabó, Artur Gieldon, Patrick P McDonald, Alexey Dashkevich, Ali Önder Yildirim, Brice Korkmaz","doi":"10.1111/febs.17411","DOIUrl":null,"url":null,"abstract":"<p><p>Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage. Extended preservation times for the transplanted donor organ correlate with heightened occurrences of vascular damage and graft dysfunction. Preservation with α1-antitrypsin, an endogenous inhibitor of NSPs, improves primary graft function after lung or heart transplantation. Furthermore, pre-operative pharmacological targeting of NSP activation in the recipient using chemical inhibitors suppresses neutrophilic inflammation in transplanted organs. Hence, effective control of NSPs in the graft and recipient is a promising strategy to prevent IR injury. In this review, we describe the pathological functions of NSPs in IR injury and discuss their pharmacological inhibition to prevent primary graft dysfunction in lung or heart transplantation.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage. Extended preservation times for the transplanted donor organ correlate with heightened occurrences of vascular damage and graft dysfunction. Preservation with α1-antitrypsin, an endogenous inhibitor of NSPs, improves primary graft function after lung or heart transplantation. Furthermore, pre-operative pharmacological targeting of NSP activation in the recipient using chemical inhibitors suppresses neutrophilic inflammation in transplanted organs. Hence, effective control of NSPs in the graft and recipient is a promising strategy to prevent IR injury. In this review, we describe the pathological functions of NSPs in IR injury and discuss their pharmacological inhibition to prevent primary graft dysfunction in lung or heart transplantation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protein biochemistry and engineering drive the development of a carbonic anhydrase-based carbon dioxide sequestration strategy. Protective effects of neutrophil serine protease inhibition against ischemia-reperfusion injury in lung or heart transplantation. Transcriptome-wide alternative mRNA splicing analysis reveals post-transcriptional regulation of neuronal differentiation. Transketolase promotes osteosarcoma progression through the YY1-PAK4 axis. I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1