Towards a single-loop Gaussian process regression based-active learning method for time-dependent reliability analysis

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanical Systems and Signal Processing Pub Date : 2025-01-21 DOI:10.1016/j.ymssp.2024.112294
Chao Dang, Marcos A. Valdebenito, Matthias G.R. Faes
{"title":"Towards a single-loop Gaussian process regression based-active learning method for time-dependent reliability analysis","authors":"Chao Dang,&nbsp;Marcos A. Valdebenito,&nbsp;Matthias G.R. Faes","doi":"10.1016/j.ymssp.2024.112294","DOIUrl":null,"url":null,"abstract":"<div><div>Time-dependent reliability analysis has received increasing attention for assessing the performance and safety of engineered components and systems subject to both random and time-varying dynamic factors. However, many existing methods may prove insufficient when applied to real-world problems, particularly in terms of applicability, efficiency and accuracy. This paper presents a novel time-dependent reliability analysis method called ‘single-loop Gaussian process regression based-active learning’ (SL-GPR-AL). In this method, a GPR model is trained as a global response surrogate model for the time-dependent performance function in an active learning fashion. A new stopping criterion is proposed to assess the convergence of the GPR model in estimating the time-dependent failure probability. Additionally, two new learning functions are introduced to identify the best next point for further refining the GPR model if the stopping criterion is not met. Finally, the well-trained GPR model in conjunction with Monte Carlo simulation provides the time-dependent failure probability over a specified time interval, along with the time-dependent failure probability function as a byproduct. Four numerical examples are analyzed to demonstrate the performance of the proposed method. The results indicate that our approach provides an alternative, efficient and accurate means for computationally expensive time-dependent reliability analysis.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"226 ","pages":"Article 112294"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327024011932","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Time-dependent reliability analysis has received increasing attention for assessing the performance and safety of engineered components and systems subject to both random and time-varying dynamic factors. However, many existing methods may prove insufficient when applied to real-world problems, particularly in terms of applicability, efficiency and accuracy. This paper presents a novel time-dependent reliability analysis method called ‘single-loop Gaussian process regression based-active learning’ (SL-GPR-AL). In this method, a GPR model is trained as a global response surrogate model for the time-dependent performance function in an active learning fashion. A new stopping criterion is proposed to assess the convergence of the GPR model in estimating the time-dependent failure probability. Additionally, two new learning functions are introduced to identify the best next point for further refining the GPR model if the stopping criterion is not met. Finally, the well-trained GPR model in conjunction with Monte Carlo simulation provides the time-dependent failure probability over a specified time interval, along with the time-dependent failure probability function as a byproduct. Four numerical examples are analyzed to demonstrate the performance of the proposed method. The results indicate that our approach provides an alternative, efficient and accurate means for computationally expensive time-dependent reliability analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
期刊最新文献
In-process analysis of the dynamic deformation of a bionic lightweight gear Physics-driven cross domain digital twin framework for bearing fault diagnosis in non-stationary conditions High resolution imaging of pressurised water supply lines Multi-channel vibration information weighted fusion for fault feature extraction of rotating machinery main bearings Automatic threshold setting for anomaly detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1