Brain Connectivity, Neural Networks, and Resilience in Aging and Neurodegeneration.

IF 4.7 2区 医学 Q1 PATHOLOGY American Journal of Pathology Pub Date : 2025-01-23 DOI:10.1016/j.ajpath.2024.12.014
Diego Szczupak, Lovisa LjungQvist Brinson, Christi L Kolarcik
{"title":"Brain Connectivity, Neural Networks, and Resilience in Aging and Neurodegeneration.","authors":"Diego Szczupak, Lovisa LjungQvist Brinson, Christi L Kolarcik","doi":"10.1016/j.ajpath.2024.12.014","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example, with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems. For example, the ability of the nervous system to perform even in the face of challenges that include neuronal loss, neuroinflammation, protein accumulation, axonal disruptions, and metabolic stress is an intriguing and exciting line of investigation. In neurodegenerative diseases, neural network resilience is responsible for the time between the earliest disease-linked changes and clinical symptom onset and disease diagnosis. In this way, connectivity resilience of neurons within the complex network of cells that make up the nervous system has significant implications. This review provides an overview of relevant concepts related to complex systems with a focus on the connectivity of the nervous system. It discusses the development of the neural network and how a delicate balance determines how this complex system responds to injury, with examples illustrating maladaptive plasticity. The review then addresses the implications of these concepts, methods to understand brain connectivity and neural networks, and recent research efforts aimed at understanding neurodegeneration from this perspective. This study aims to provide foundational knowledge and an overview of current research directions in this evolving and exciting area of neuroscience.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2024.12.014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example, with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems. For example, the ability of the nervous system to perform even in the face of challenges that include neuronal loss, neuroinflammation, protein accumulation, axonal disruptions, and metabolic stress is an intriguing and exciting line of investigation. In neurodegenerative diseases, neural network resilience is responsible for the time between the earliest disease-linked changes and clinical symptom onset and disease diagnosis. In this way, connectivity resilience of neurons within the complex network of cells that make up the nervous system has significant implications. This review provides an overview of relevant concepts related to complex systems with a focus on the connectivity of the nervous system. It discusses the development of the neural network and how a delicate balance determines how this complex system responds to injury, with examples illustrating maladaptive plasticity. The review then addresses the implications of these concepts, methods to understand brain connectivity and neural networks, and recent research efforts aimed at understanding neurodegeneration from this perspective. This study aims to provide foundational knowledge and an overview of current research directions in this evolving and exciting area of neuroscience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.40
自引率
0.00%
发文量
178
审稿时长
30 days
期刊介绍: The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.
期刊最新文献
A need for multi-institutional collaboration for deep learning-driven assessment of osteosarcoma treatment response. C5aR1 Promotes Invasion, Metastasis and Poor Prognosis in Cutaneous Squamous Cell Carcinoma. Hypoxia contributes to the early stage progression of necrotizing sialometaplasia. TOLLIP downregulation by cigarette smoke exposure impairs human lung defense against Influenza A virus infection. The Involvement of Mitochondrial Dysfunction during the Development of Adenomyosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1