Clinical and molecular characteristics and long-term outcomes of pediatric intracranial meningiomas: a comprehensive analysis from a single neurosurgical center.
{"title":"Clinical and molecular characteristics and long-term outcomes of pediatric intracranial meningiomas: a comprehensive analysis from a single neurosurgical center.","authors":"Leihao Ren, Jiaojiao Deng, Hiroaki Wakimoto, Qing Xie, Ye Gong, Lingyang Hua","doi":"10.1186/s40478-025-01925-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Meningioma represents the most common intracranial tumor in adults. However, it is rare in pediatric patients. We aimed to demonstrate the clinicopathological characteristics and long-term outcome of pediatric meningiomas (PMs).</p><p><strong>Method: </strong>We enrolled 74 patients with intracranial PMs and analyzed their clinicopathological characteristics. Targeted next generation sequencing was used to detect alterations in meningioma relevant genes. Progression-free survival (PFS) was compared between PMs and adult meningiomas (AMs). Univariate and multivariate Cox analyses were employed to evaluate the predictive values of clinicopathological characteristics. A nomogram was constructed and its predictive accuracy evaluated.</p><p><strong>Result: </strong>40 females (54.1%) and 34 males (45.9%) patients, with the gender ratio of 1.18:1, were identified. 9 (12.2%) cases were clinically diagnosed as NF2-related Schwannomatosis (NF2-SWN), while 65 (87.8%) were sporadic. Ventricular location was found in 16 patients (21.6%). 19 patients (25.7%) experienced recurrence during a median follow-up period of 33 months (range 2 -145.25 months). The 3-, 5-, and 8-year PFS rates was 74.74%, 74.74%, and 59.38%, respectively. The PFS of the PM and AM cohorts were not significantly different, with or without propensity score matching. NF2 mutation was observed in 33 sporadic PMs (52.4%), whereas alterations in other genes (AKT1, TRAF7, SMO, PIK3CA, KLF4) frequently mutated in AMs, were not identified. The proportion of NF2 mutation in PMs was significantly lower in the skull base than other locations (p = 0.02). One anaplastic PM harbored TERT promoter mutation. Of note, in sporadic PMs, NF2 mutations were not significantly associated with PFS (p = 0.434) or overall survival (OS) (p = 0.60). The multivariate Cox analysis showed NF2-SWN (p < 0.001) and extent of resection (p = 0.013) to be independently associated with the PFS of PMs. Our prognostic model showed predictive accuracy for long-term PFS in PMs as the 3-, 5- and 8-year Area Under the Curve (AUC) was 0.927, 0.930, and 0.870, respectively.</p><p><strong>Conclusion: </strong>PM was characterized by its relative male predominance, ventricular location, NF2-SWN, and NF2 mutation. Of note, PMs had similar prognosis to AMs and NF2 alteration was not significantly associated with PFS in PMs.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"15"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760721/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01925-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Meningioma represents the most common intracranial tumor in adults. However, it is rare in pediatric patients. We aimed to demonstrate the clinicopathological characteristics and long-term outcome of pediatric meningiomas (PMs).
Method: We enrolled 74 patients with intracranial PMs and analyzed their clinicopathological characteristics. Targeted next generation sequencing was used to detect alterations in meningioma relevant genes. Progression-free survival (PFS) was compared between PMs and adult meningiomas (AMs). Univariate and multivariate Cox analyses were employed to evaluate the predictive values of clinicopathological characteristics. A nomogram was constructed and its predictive accuracy evaluated.
Result: 40 females (54.1%) and 34 males (45.9%) patients, with the gender ratio of 1.18:1, were identified. 9 (12.2%) cases were clinically diagnosed as NF2-related Schwannomatosis (NF2-SWN), while 65 (87.8%) were sporadic. Ventricular location was found in 16 patients (21.6%). 19 patients (25.7%) experienced recurrence during a median follow-up period of 33 months (range 2 -145.25 months). The 3-, 5-, and 8-year PFS rates was 74.74%, 74.74%, and 59.38%, respectively. The PFS of the PM and AM cohorts were not significantly different, with or without propensity score matching. NF2 mutation was observed in 33 sporadic PMs (52.4%), whereas alterations in other genes (AKT1, TRAF7, SMO, PIK3CA, KLF4) frequently mutated in AMs, were not identified. The proportion of NF2 mutation in PMs was significantly lower in the skull base than other locations (p = 0.02). One anaplastic PM harbored TERT promoter mutation. Of note, in sporadic PMs, NF2 mutations were not significantly associated with PFS (p = 0.434) or overall survival (OS) (p = 0.60). The multivariate Cox analysis showed NF2-SWN (p < 0.001) and extent of resection (p = 0.013) to be independently associated with the PFS of PMs. Our prognostic model showed predictive accuracy for long-term PFS in PMs as the 3-, 5- and 8-year Area Under the Curve (AUC) was 0.927, 0.930, and 0.870, respectively.
Conclusion: PM was characterized by its relative male predominance, ventricular location, NF2-SWN, and NF2 mutation. Of note, PMs had similar prognosis to AMs and NF2 alteration was not significantly associated with PFS in PMs.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.