CD163 impairs HBV clearance in mice by regulating intrahepatic T cell immune response via an IL-10-dependent mechanism

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Antiviral research Pub Date : 2025-01-22 DOI:10.1016/j.antiviral.2025.106093
Ziying Liu , Guiping Li , Xiaoran Li , Yiran Wang , Leyi Liao , Ti Yang , Chao Han , Kuiyuan Huang , Chuyuan Chen , Xuanyi Li , Hongyan Liu , Xiaoyong Zhang
{"title":"CD163 impairs HBV clearance in mice by regulating intrahepatic T cell immune response via an IL-10-dependent mechanism","authors":"Ziying Liu ,&nbsp;Guiping Li ,&nbsp;Xiaoran Li ,&nbsp;Yiran Wang ,&nbsp;Leyi Liao ,&nbsp;Ti Yang ,&nbsp;Chao Han ,&nbsp;Kuiyuan Huang ,&nbsp;Chuyuan Chen ,&nbsp;Xuanyi Li ,&nbsp;Hongyan Liu ,&nbsp;Xiaoyong Zhang","doi":"10.1016/j.antiviral.2025.106093","DOIUrl":null,"url":null,"abstract":"<div><h3>Background &amp; aims</h3><div>Chronic hepatitis B (CHB) arises from a persistent hepatitis B virus (HBV) infection, complicating efforts for a functional cure. Kupffer cells (KCs), liver-resident macrophages, are pivotal in mediating immune tolerance to HBV. Although CD163 marks M2-polarized KCs, its precise role in HBV infection remains unclear and warrants further investigation.</div></div><div><h3>Methods</h3><div>CD163 expression in liver tissues of patients with CHB was analyzed using the Gene Expression Omnibus (GEO) database. <em>Cd163</em> knockout mice were utilized to establish HBV-persistent mouse model, and CD163 deficiency effect on HBV viral markers and T cell immune responses were examined <em>in vivo</em> and <em>in vitro</em>.</div></div><div><h3>Results</h3><div>CD163 expression was elevated and correlated with ALT levels in the liver of patients with CHB. In HBV-persistent mouse model, CD163 deficiency facilitated the clearance of HBsAg, HBeAg, HBV DNA, and HBcAg. Additionally, CD163 deficiency promoted the differentiation of naïve T cells into HBV-specific effector T cells. Further, we found that CD163 deficiency reduces KCs-derived IL-10 secretion, and blocking IL-10 further strengthens the enhanced HBV-specific T cell response due to CD163 deficiency.</div></div><div><h3>Conclusions</h3><div>Our findings indicate that CD163 deficiency enhances the HBV-specific T cell response, thereby facilitating HBV clearance through reducing KCs-derived IL-10 secretion. This suggests that CD163 may serve as a potential target for the restoration of exhausted T cell function.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"235 ","pages":"Article 106093"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354225000191","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background & aims

Chronic hepatitis B (CHB) arises from a persistent hepatitis B virus (HBV) infection, complicating efforts for a functional cure. Kupffer cells (KCs), liver-resident macrophages, are pivotal in mediating immune tolerance to HBV. Although CD163 marks M2-polarized KCs, its precise role in HBV infection remains unclear and warrants further investigation.

Methods

CD163 expression in liver tissues of patients with CHB was analyzed using the Gene Expression Omnibus (GEO) database. Cd163 knockout mice were utilized to establish HBV-persistent mouse model, and CD163 deficiency effect on HBV viral markers and T cell immune responses were examined in vivo and in vitro.

Results

CD163 expression was elevated and correlated with ALT levels in the liver of patients with CHB. In HBV-persistent mouse model, CD163 deficiency facilitated the clearance of HBsAg, HBeAg, HBV DNA, and HBcAg. Additionally, CD163 deficiency promoted the differentiation of naïve T cells into HBV-specific effector T cells. Further, we found that CD163 deficiency reduces KCs-derived IL-10 secretion, and blocking IL-10 further strengthens the enhanced HBV-specific T cell response due to CD163 deficiency.

Conclusions

Our findings indicate that CD163 deficiency enhances the HBV-specific T cell response, thereby facilitating HBV clearance through reducing KCs-derived IL-10 secretion. This suggests that CD163 may serve as a potential target for the restoration of exhausted T cell function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
期刊最新文献
Antiviral drug discovery with an optimized biochemical dengue protease assay: Improved predictive power for antiviral efficacy. Nucleotide analogues and mpox: Repurposing the repurposable. HBV serum RNA kinetics during nucleic acid polymers based therapy predict functional cure. Antiviral effect of pinostrobin, a bioactive constituent of Boesenbergia rotunda, against porcine epidemic diarrhea virus. Ginkgolic acid inhibits Ebola virus transcription and replication by disrupting the interaction between nucleoprotein and VP30 protein.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1