Development and Evaluation of Polymethacrylate-Based Ophthalmic Nanofiber Inserts Containing Dual Drug-Loaded Dorzolamide and Timolol: In Vivo Study in Rabbit's Eye.
Ahmad Karami, Shahla Mirzaeei, Leila Rezaei, Ali Nokhodchi
{"title":"Development and Evaluation of Polymethacrylate-Based Ophthalmic Nanofiber Inserts Containing Dual Drug-Loaded Dorzolamide and Timolol: In Vivo Study in Rabbit's Eye.","authors":"Ahmad Karami, Shahla Mirzaeei, Leila Rezaei, Ali Nokhodchi","doi":"10.3390/biomedicines13010200","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/objectives:</b> The aim of the study was to create a nanofiber insert incorporating Timolol (TIM) and Dorzolamide (DOR), targeting the management of glaucoma. This condition encompasses a variety of chronic, advancing ocular disorders typically associated with elevated intraocular pressure (IOP). <b>Methods:</b> The insert was made of Eudragite RL100 (EUD) polymer, a biocompatible material with high bioavailability, using the electrospinning method. The inserts were studied for morphology, drug-polymer interaction, physicochemical properties, and in vitro drug-release study. The pharmacokinetic properties of fibers were examined alongside consideration for irritation using a rabbit model and cell compatibility. <b>Results:</b> The results of the in vitro drug-release test showed retention and controlled release of both DOR/TIM over 80 h. Morphological examination demonstrated uniform nanofibers with mean diameters < 465 nm. The cell compatibility test showed a high percentage of cell survival, and none of the formulations irritated the rabbit's eye. The Area Under the Curve (AUC0-72) for DOR and TIM in EDT formulations was approximately 3216.63 ± 63.25 µg·h/mL and 2598.89 ± 46.65 µg·h/mL, respectively, with Mean Residence Times (MRTs) of approximately 21.6 ± 0.19 h and 16.29 ± 6.44 h. <b>Conclusions:</b> Based on the results, the dual drug-loaded nanofiber preservative-free system can potentially be a suitable alternative to eye drops and can be used to reduce fluctuation and dose frequency.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760426/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13010200","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: The aim of the study was to create a nanofiber insert incorporating Timolol (TIM) and Dorzolamide (DOR), targeting the management of glaucoma. This condition encompasses a variety of chronic, advancing ocular disorders typically associated with elevated intraocular pressure (IOP). Methods: The insert was made of Eudragite RL100 (EUD) polymer, a biocompatible material with high bioavailability, using the electrospinning method. The inserts were studied for morphology, drug-polymer interaction, physicochemical properties, and in vitro drug-release study. The pharmacokinetic properties of fibers were examined alongside consideration for irritation using a rabbit model and cell compatibility. Results: The results of the in vitro drug-release test showed retention and controlled release of both DOR/TIM over 80 h. Morphological examination demonstrated uniform nanofibers with mean diameters < 465 nm. The cell compatibility test showed a high percentage of cell survival, and none of the formulations irritated the rabbit's eye. The Area Under the Curve (AUC0-72) for DOR and TIM in EDT formulations was approximately 3216.63 ± 63.25 µg·h/mL and 2598.89 ± 46.65 µg·h/mL, respectively, with Mean Residence Times (MRTs) of approximately 21.6 ± 0.19 h and 16.29 ± 6.44 h. Conclusions: Based on the results, the dual drug-loaded nanofiber preservative-free system can potentially be a suitable alternative to eye drops and can be used to reduce fluctuation and dose frequency.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.