Bacterial Diversity in Native Heart Valves in Infective Endocarditis.

IF 3.9 3区 工程技术 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomedicines Pub Date : 2025-01-20 DOI:10.3390/biomedicines13010245
Anna Sinitskaya, Alexander Kostyunin, Maxim Asanov, Maria Khutornaya, Anastasia Klyueva, Alyona Poddubnyak, Alexey Tupikin, Marsel Kabilov, Maxim Sinitsky
{"title":"Bacterial Diversity in Native Heart Valves in Infective Endocarditis.","authors":"Anna Sinitskaya, Alexander Kostyunin, Maxim Asanov, Maria Khutornaya, Anastasia Klyueva, Alyona Poddubnyak, Alexey Tupikin, Marsel Kabilov, Maxim Sinitsky","doi":"10.3390/biomedicines13010245","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Infective endocarditis (IE) is an infectious disease caused by the hematogenous dissemination of bacteria into heart valves. Improving the identification of pathogens that cause IE is important to increase the effectiveness of its therapy and reduce the mortality caused by this pathology. <b>Methods:</b> Ten native heart valves obtained from IE patients undergoing heart valve replacements were analyzed. Bacterial invasion in the heart valves was studied by Gram staining of histological sections. Histopathological changes accompanied with bacterial invasion were studied by immunohistochemical analysis of pan-leukocyte marker CD45, platelet marker CD41, and neutrophil myeloperoxidase. The taxonomic diversity of the bacteria was analyzed using 16S rRNA metabarcoding. <b>Results:</b> Gram staining of the histological sections revealed bacterial cells localized on the atrial surface at the leaflet's free edge or on the ventricular surface at the leaflet's base within fibrin deposits in only three of the studied heart valves. Bacterial colonies were co-localized with microthrombi (CD41<sup>+</sup> cells) containing single leucocytes (CD45<sup>+</sup> cells), represented by segmented neutrophils. As a result of 16S rRNA metabarcoding, we detected the following bacterial genera: <i>Pseudomonas</i> (70% of the studied heart valves), <i>Roseateles</i> (60%), <i>Acinetobacter</i> (40%), <i>Sphingomonas</i> (40%), <i>Enterococcus</i> (30%), <i>Reyranella</i> (20%), <i>Sphingobium</i> (20%), <i>Streptococcus</i> (20%), <i>Agrobacterium</i> (20%), <i>Ralstonia</i> (10%), and <i>Bacillus</i> (10%). <b>Conclusions:</b> A number of opportunistic microorganisms that could not be detected by routine laboratory tests and were not eliminated during antibiotic therapy were identified in the IE-affected heart valves. The obtained results show the importance of 16S rRNA metabarcoding of heart valves removed due to IE not only as an independent diagnostic method but also as a highly accurate approach that complements routine tests for pathogen identification.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13010245","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Infective endocarditis (IE) is an infectious disease caused by the hematogenous dissemination of bacteria into heart valves. Improving the identification of pathogens that cause IE is important to increase the effectiveness of its therapy and reduce the mortality caused by this pathology. Methods: Ten native heart valves obtained from IE patients undergoing heart valve replacements were analyzed. Bacterial invasion in the heart valves was studied by Gram staining of histological sections. Histopathological changes accompanied with bacterial invasion were studied by immunohistochemical analysis of pan-leukocyte marker CD45, platelet marker CD41, and neutrophil myeloperoxidase. The taxonomic diversity of the bacteria was analyzed using 16S rRNA metabarcoding. Results: Gram staining of the histological sections revealed bacterial cells localized on the atrial surface at the leaflet's free edge or on the ventricular surface at the leaflet's base within fibrin deposits in only three of the studied heart valves. Bacterial colonies were co-localized with microthrombi (CD41+ cells) containing single leucocytes (CD45+ cells), represented by segmented neutrophils. As a result of 16S rRNA metabarcoding, we detected the following bacterial genera: Pseudomonas (70% of the studied heart valves), Roseateles (60%), Acinetobacter (40%), Sphingomonas (40%), Enterococcus (30%), Reyranella (20%), Sphingobium (20%), Streptococcus (20%), Agrobacterium (20%), Ralstonia (10%), and Bacillus (10%). Conclusions: A number of opportunistic microorganisms that could not be detected by routine laboratory tests and were not eliminated during antibiotic therapy were identified in the IE-affected heart valves. The obtained results show the importance of 16S rRNA metabarcoding of heart valves removed due to IE not only as an independent diagnostic method but also as a highly accurate approach that complements routine tests for pathogen identification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedicines
Biomedicines Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍: Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.
期刊最新文献
Correction: Aksic et al. The Neuroprotective Effect of Neural Cell Adhesion Molecule L1 in the Hippocampus of Aged Alzheimer's Disease Model Mice. Biomedicines 2024, 12, 1726. Palm Tocotrienol Activates the Wnt3a/β-Catenin Signaling Pathway, Protecting MC3T3-E1 Osteoblasts from Cellular Damage Caused by Dexamethasone and Promoting Bone Formation. A Biopsychosocial Overview of Speech Disorders: Neuroanatomical, Genetic, and Environmental Insights. The Role of Air Pollution and Olfactory Dysfunction in Alzheimer's Disease Pathogenesis. Intra- and Interspecies Conjugal Transfer of Plasmids in Gram-Negative Bacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1