Laura Martelo-Vidal, Sara Vázquez-Mera, Pablo Miguéns-Suárez, Susana Belén Bravo-López, Heidi Makrinioti, Vicente Domínguez-Arca, Javier de-Miguel-Díez, Alberto Gómez-Carballa, Antonio Salas, Francisco Javier González-Barcala, Francisco Javier Salgado, Juan José Nieto-Fontarigo
{"title":"Urinary Proteome and Exosome Analysis Protocol for the Discovery of Respiratory Diseases Biomarkers.","authors":"Laura Martelo-Vidal, Sara Vázquez-Mera, Pablo Miguéns-Suárez, Susana Belén Bravo-López, Heidi Makrinioti, Vicente Domínguez-Arca, Javier de-Miguel-Díez, Alberto Gómez-Carballa, Antonio Salas, Francisco Javier González-Barcala, Francisco Javier Salgado, Juan José Nieto-Fontarigo","doi":"10.3390/biom15010060","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs). To achieve this, urine was DTT treated to decrease uromodulin, then concentrated and ultracentrifuged. Proteomic analyses of exosome-free urine were performed using LC-MS/MS. Simultaneously, miRNA expression from urine exosomes was measured using either RTqPCR (pre-amplification) or nCounter Nanostring (non-amplication) analyses. We detected 548 different proteins in exosome-free urine samples (N = 5) with high confidence (FDR < 1%), many of them being expressed in different non-renal tissues. Specifically, lung-related proteins were overrepresented (Fold enrichment = 1.31; FDR = 0.0335) compared to whole human proteome, and 10-15% were already described as protein biomarkers for several pulmonary diseases. Urine proteins identified belong to several functional categories important in respiratory pathology. We could confirm the expression of miRNAs previously connected to respiratory diseases (i.e., miR-16-5p, miR-21-5p, miR-146a-5p, and miR-215-5p) in urine exosomes by RTqPCR. Finally, we detected 333 miRNAs using Nanostring, 15 of them up-regulated in T2<sup>high</sup> asthma (N = 4) compared to T2<sup>low</sup> asthma (N = 4) and healthy subjects (N = 4). Therefore, this protocol combining the urinary proteome (exosome free) with the study of urinary exosome components (i.e., miRNAs) holds great potential for molecular biomarker discovery of non-renal and particularly respiratory pathologies.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010060","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs). To achieve this, urine was DTT treated to decrease uromodulin, then concentrated and ultracentrifuged. Proteomic analyses of exosome-free urine were performed using LC-MS/MS. Simultaneously, miRNA expression from urine exosomes was measured using either RTqPCR (pre-amplification) or nCounter Nanostring (non-amplication) analyses. We detected 548 different proteins in exosome-free urine samples (N = 5) with high confidence (FDR < 1%), many of them being expressed in different non-renal tissues. Specifically, lung-related proteins were overrepresented (Fold enrichment = 1.31; FDR = 0.0335) compared to whole human proteome, and 10-15% were already described as protein biomarkers for several pulmonary diseases. Urine proteins identified belong to several functional categories important in respiratory pathology. We could confirm the expression of miRNAs previously connected to respiratory diseases (i.e., miR-16-5p, miR-21-5p, miR-146a-5p, and miR-215-5p) in urine exosomes by RTqPCR. Finally, we detected 333 miRNAs using Nanostring, 15 of them up-regulated in T2high asthma (N = 4) compared to T2low asthma (N = 4) and healthy subjects (N = 4). Therefore, this protocol combining the urinary proteome (exosome free) with the study of urinary exosome components (i.e., miRNAs) holds great potential for molecular biomarker discovery of non-renal and particularly respiratory pathologies.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.