Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomolecules Pub Date : 2025-01-08 DOI:10.3390/biom15010084
Tamana Eskandari, Yasamin Eivazzadeh, Fatemeh Khaleghinia, Fatemeh Kashi, Valentyn Oksenych, Dariush Haghmorad
{"title":"Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses.","authors":"Tamana Eskandari, Yasamin Eivazzadeh, Fatemeh Khaleghinia, Fatemeh Kashi, Valentyn Oksenych, Dariush Haghmorad","doi":"10.3390/biom15010084","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally, research on the adaptive immune system has focused on protein antigens, but emerging evidence has underscored the essential role of lipid antigens in immune modulation. Lipid antigens are presented by CD1 molecules and activate invariant natural killer T (iNKT) cells and group 1 CD1-restricted T cells, whereby they impact immune responses to pathogens and tumors. Recent advances in mass spectrometry, imaging techniques, and lipidomics have revolutionized the identification and characterization of lipid antigens and enhanced our understanding of their structural diversity and functional significance. These advancements have paved the way for lipid-based vaccines and immunotherapies through the application of nanoparticles and synthetic lipid antigens designed to boost immune responses against cancers and infectious diseases. Lipid trafficking, CD1 molecule interactions, and the immune system's response to lipid antigens are yet to be completely understood, particularly in the context of autoimmunity and microbial infections. In the years to come, continued research efforts are needed to uncover its underlying biological mechanisms and to exploit the full potential of therapies directed against lipid antigens.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010084","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, research on the adaptive immune system has focused on protein antigens, but emerging evidence has underscored the essential role of lipid antigens in immune modulation. Lipid antigens are presented by CD1 molecules and activate invariant natural killer T (iNKT) cells and group 1 CD1-restricted T cells, whereby they impact immune responses to pathogens and tumors. Recent advances in mass spectrometry, imaging techniques, and lipidomics have revolutionized the identification and characterization of lipid antigens and enhanced our understanding of their structural diversity and functional significance. These advancements have paved the way for lipid-based vaccines and immunotherapies through the application of nanoparticles and synthetic lipid antigens designed to boost immune responses against cancers and infectious diseases. Lipid trafficking, CD1 molecule interactions, and the immune system's response to lipid antigens are yet to be completely understood, particularly in the context of autoimmunity and microbial infections. In the years to come, continued research efforts are needed to uncover its underlying biological mechanisms and to exploit the full potential of therapies directed against lipid antigens.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂质抗原:揭示适应性免疫反应中隐藏的参与者。
传统上,对适应性免疫系统的研究主要集中在蛋白抗原上,但新出现的证据强调了脂质抗原在免疫调节中的重要作用。脂质抗原由CD1分子呈递,激活不变自然杀伤T细胞(iNKT)和1组CD1限制性T细胞,从而影响对病原体和肿瘤的免疫反应。质谱、成像技术和脂质组学的最新进展彻底改变了脂质抗原的鉴定和表征,增强了我们对其结构多样性和功能意义的理解。这些进步通过纳米颗粒和合成脂质抗原的应用,为基于脂质的疫苗和免疫疗法铺平了道路,旨在增强对癌症和传染病的免疫反应。脂质运输、CD1分子相互作用和免疫系统对脂质抗原的反应尚未完全了解,特别是在自身免疫和微生物感染的背景下。在未来的几年里,需要持续的研究努力来揭示其潜在的生物学机制,并利用针对脂质抗原的治疗的全部潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Biological Evaluation and SAR Exploration of Bile Acid-Dihydroartemisinin Hybrids as Potential Anticancer Agents for Colorectal Cancer. Novel Insights into TSC22D Family Genes in Metabolic Diseases and Cancer. 2-Arylbenzofurans as Selective Cholinesterase Inhibitors: Design, Synthesis, and Evaluation as Alzheimer's Disease Agents. Computing the Dissociation Constant from Molecular Dynamics Simulations with Corrections for the Large Pressure Fluctuations-Aquaglyceroporins Have High Affinity for Their Substrate Glycerol. Cyclic-FMN Is a Detectable, Putative Intermediate of FAD Metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1