Longsheng Xie, Christopher Lockhart, Steven R Bowers, Dmitri K Klimov, Mohsin Saleet Jafri
{"title":"Structural Analysis of Amylin and Amyloid β Peptide Signaling in Alzheimer's Disease.","authors":"Longsheng Xie, Christopher Lockhart, Steven R Bowers, Dmitri K Klimov, Mohsin Saleet Jafri","doi":"10.3390/biom15010089","DOIUrl":null,"url":null,"abstract":"<p><p>Amylin and amyloid β belong to the same protein family and activate the same receptors. Amyloid β levels are elevated in Alzheimer's disease. Recent studies have demonstrated that amylin-based peptides can reduce the symptoms of Alzheimer's disease in animal models. Replica exchange molecular dynamics simulation machine learning, as well as other computational analyses, were applied to improve the understanding of the amino acid residues in these amylin-based peptides. Comparisons were made between amylin, amylin-based peptides, and amyloid β. These studies converged on amylin residues 10Q, 28S, 29S, 30T, 31N, 32V, 33G, 34S, and 35N (residues 10 and 28-35) being ranked highest, meaning that they were the most likely to be involved in activating the same targets as amyloid β. Surprisingly, the amyloid β signaling domain most closely matched amylin residues 29-35 in the simulated structures. These findings suggest important residues that are structurally similar between amylin and amyloid β and are thus implicated in the activation of the amylin receptor.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763987/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010089","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amylin and amyloid β belong to the same protein family and activate the same receptors. Amyloid β levels are elevated in Alzheimer's disease. Recent studies have demonstrated that amylin-based peptides can reduce the symptoms of Alzheimer's disease in animal models. Replica exchange molecular dynamics simulation machine learning, as well as other computational analyses, were applied to improve the understanding of the amino acid residues in these amylin-based peptides. Comparisons were made between amylin, amylin-based peptides, and amyloid β. These studies converged on amylin residues 10Q, 28S, 29S, 30T, 31N, 32V, 33G, 34S, and 35N (residues 10 and 28-35) being ranked highest, meaning that they were the most likely to be involved in activating the same targets as amyloid β. Surprisingly, the amyloid β signaling domain most closely matched amylin residues 29-35 in the simulated structures. These findings suggest important residues that are structurally similar between amylin and amyloid β and are thus implicated in the activation of the amylin receptor.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.