Despoina P Kiouri, Georgios C Batsis, Christos T Chasapis
{"title":"Structure-Based Approaches for Protein-Protein Interaction Prediction Using Machine Learning and Deep Learning.","authors":"Despoina P Kiouri, Georgios C Batsis, Christos T Chasapis","doi":"10.3390/biom15010141","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-Protein Interaction (PPI) prediction plays a pivotal role in understanding cellular processes and uncovering molecular mechanisms underlying health and disease. Structure-based PPI prediction has emerged as a robust alternative to sequence-based methods, offering greater biological accuracy by integrating three-dimensional spatial and biochemical features. This work summarizes the recent advances in computational approaches leveraging protein structure information for PPI prediction, focusing on machine learning (ML) and deep learning (DL) techniques. These methods not only improve predictive accuracy but also provide insights into functional sites, such as binding and catalytic residues. However, challenges such as limited high-resolution structural data and the need for effective negative sampling persist. Through the integration of experimental and computational tools, structure-based prediction paves the way for comprehensive proteomic network analysis, holding promise for advancements in drug discovery, biomarker identification, and personalized medicine. Future directions include enhancing scalability and dataset reliability to expand these approaches across diverse proteomes.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763140/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010141","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-Protein Interaction (PPI) prediction plays a pivotal role in understanding cellular processes and uncovering molecular mechanisms underlying health and disease. Structure-based PPI prediction has emerged as a robust alternative to sequence-based methods, offering greater biological accuracy by integrating three-dimensional spatial and biochemical features. This work summarizes the recent advances in computational approaches leveraging protein structure information for PPI prediction, focusing on machine learning (ML) and deep learning (DL) techniques. These methods not only improve predictive accuracy but also provide insights into functional sites, such as binding and catalytic residues. However, challenges such as limited high-resolution structural data and the need for effective negative sampling persist. Through the integration of experimental and computational tools, structure-based prediction paves the way for comprehensive proteomic network analysis, holding promise for advancements in drug discovery, biomarker identification, and personalized medicine. Future directions include enhancing scalability and dataset reliability to expand these approaches across diverse proteomes.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.