Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells.

IF 2.2 4区 医学 Q2 UROLOGY & NEPHROLOGY BMC Nephrology Pub Date : 2025-01-24 DOI:10.1186/s12882-025-03965-z
Aiko Seki, Koichiro Kajiwara, Jumpei Teramachi, Masahiko Egusa, Takuya Miyawaki, Yoshihiko Sawa
{"title":"Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells.","authors":"Aiko Seki, Koichiro Kajiwara, Jumpei Teramachi, Masahiko Egusa, Takuya Miyawaki, Yoshihiko Sawa","doi":"10.1186/s12882-025-03965-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.) nucleatum has the TLR4-associated strong activator of the colorectal inflammation and cancer. The present study aimed to investigate the possibility of F. nucleatum as an exacerbation factor of diabetes through the renal SGLT2 induction.</p><p><strong>Methods: </strong>The induction of the SGLT2 by F. nucleatum LPS (Fn-LPS) were investigated in the streptozotocin-induced diabetic mouse renal tissue and cultured renal proximal epithelial cells. The changes of blood glucose levels and survival curves in diabetic mice with Fn-LPS were analyzed. The Fn-LPS-induced SGLT2 production in the diabetic mouse renal tissue and in the cultured proximal epithelial cells was examined by ELISA, quantitative RT-PCR, and immunohistochemical analysis.</p><p><strong>Results: </strong>The SGLT2 expression in the cultured mouse tubular epithelial cells was significantly increased by TNF- or co-culture with Fn-LPS-supplemented J774.1 cells. The period to reach diabetic condition was significantly shorter in Fn-LPS-administered diabetic mice than in diabetic mice. All Fn-LPS-administered-diabetic mice reached humane endpoints during the healthy period of all of the mice administered Fn-LPS only. The promotion of the SGLT2 expression at the inner lumen of proximal tubules were stronger in the Fn-LPS-administered-diabetic mice than in diabetic mice. The renal tissue SGLT2 mRNA amounts and the number of renal proximal tubules with overexpressed SGLT2 in the lumen were more in the Fn-LPS-administered-diabetic mice than in diabetic mice.</p><p><strong>Conclusions: </strong>This study suggests that F. nucleatum causes the promotion of diabetes through the overexpression of SGLT2 in proximal tubules under the diabetic condition. Periodontitis with F. nucleatum may be a diabetic exacerbating factor.</p>","PeriodicalId":9089,"journal":{"name":"BMC Nephrology","volume":"26 1","pages":"38"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12882-025-03965-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.) nucleatum has the TLR4-associated strong activator of the colorectal inflammation and cancer. The present study aimed to investigate the possibility of F. nucleatum as an exacerbation factor of diabetes through the renal SGLT2 induction.

Methods: The induction of the SGLT2 by F. nucleatum LPS (Fn-LPS) were investigated in the streptozotocin-induced diabetic mouse renal tissue and cultured renal proximal epithelial cells. The changes of blood glucose levels and survival curves in diabetic mice with Fn-LPS were analyzed. The Fn-LPS-induced SGLT2 production in the diabetic mouse renal tissue and in the cultured proximal epithelial cells was examined by ELISA, quantitative RT-PCR, and immunohistochemical analysis.

Results: The SGLT2 expression in the cultured mouse tubular epithelial cells was significantly increased by TNF- or co-culture with Fn-LPS-supplemented J774.1 cells. The period to reach diabetic condition was significantly shorter in Fn-LPS-administered diabetic mice than in diabetic mice. All Fn-LPS-administered-diabetic mice reached humane endpoints during the healthy period of all of the mice administered Fn-LPS only. The promotion of the SGLT2 expression at the inner lumen of proximal tubules were stronger in the Fn-LPS-administered-diabetic mice than in diabetic mice. The renal tissue SGLT2 mRNA amounts and the number of renal proximal tubules with overexpressed SGLT2 in the lumen were more in the Fn-LPS-administered-diabetic mice than in diabetic mice.

Conclusions: This study suggests that F. nucleatum causes the promotion of diabetes through the overexpression of SGLT2 in proximal tubules under the diabetic condition. Periodontitis with F. nucleatum may be a diabetic exacerbating factor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Nephrology
BMC Nephrology UROLOGY & NEPHROLOGY-
CiteScore
4.30
自引率
0.00%
发文量
375
审稿时长
3-8 weeks
期刊介绍: BMC Nephrology is an open access journal publishing original peer-reviewed research articles in all aspects of the prevention, diagnosis and management of kidney and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Correspondence: insulin resistance and chronic kidney disease in patients without diabetes. Management of volume load for patients undergoing hemodialysis via WeChat and home monitoring in China: a protocol for a cluster-randomized trial. The effects of lymphocele formation after living donor kidney transplantation on mid-term allograft function. Various endurance training intensities improve GFR and Up-regulate AQP2/GSK3β in lithium-induced nephropathic rats. Association between triglyceride-glucose index and clinical outcomes among patients with chronic kidney disease: a meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1