Mustafa Koyun, Zeycan Kubra Cevval, Bahadir Reis, Bunyamin Ece
{"title":"Detection of Intracranial Hemorrhage from Computed Tomography Images: Diagnostic Role and Efficacy of ChatGPT-4o.","authors":"Mustafa Koyun, Zeycan Kubra Cevval, Bahadir Reis, Bunyamin Ece","doi":"10.3390/diagnostics15020143","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> The role of artificial intelligence (AI) in radiological image analysis is rapidly evolving. This study evaluates the diagnostic performance of Chat Generative Pre-trained Transformer Omni (GPT-4 Omni) in detecting intracranial hemorrhages (ICHs) in non-contrast computed tomography (NCCT) images, along with its ability to classify hemorrhage type, stage, anatomical location, and associated findings. <b>Methods:</b> A retrospective study was conducted using 240 cases, comprising 120 ICH cases and 120 controls with normal findings. Five consecutive NCCT slices per case were selected by radiologists and analyzed by ChatGPT-4o using a standardized prompt with nine questions. Diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated by comparing the model's results with radiologists' assessments (the gold standard). After a two-week interval, the same dataset was re-evaluated to assess intra-observer reliability and consistency. <b>Results:</b> ChatGPT-4o achieved 100% accuracy in identifying imaging modality type. For ICH detection, the model demonstrated a diagnostic accuracy of 68.3%, sensitivity of 79.2%, specificity of 57.5%, PPV of 65.1%, and NPV of 73.4%. It correctly classified 34.0% of hemorrhage types and 7.3% of localizations. All ICH-positive cases were identified as acute phase (100%). In the second evaluation, diagnostic accuracy improved to 73.3%, with a sensitivity of 86.7% and a specificity of 60%. The Cohen's Kappa coefficient for intra-observer agreement in ICH detection indicated moderate agreement (κ = 0.469). <b>Conclusions:</b> ChatGPT-4o shows promise in identifying imaging modalities and ICH presence but demonstrates limitations in localization and hemorrhage type classification. These findings highlight its potential for improvement through targeted training for medical applications.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763562/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020143","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: The role of artificial intelligence (AI) in radiological image analysis is rapidly evolving. This study evaluates the diagnostic performance of Chat Generative Pre-trained Transformer Omni (GPT-4 Omni) in detecting intracranial hemorrhages (ICHs) in non-contrast computed tomography (NCCT) images, along with its ability to classify hemorrhage type, stage, anatomical location, and associated findings. Methods: A retrospective study was conducted using 240 cases, comprising 120 ICH cases and 120 controls with normal findings. Five consecutive NCCT slices per case were selected by radiologists and analyzed by ChatGPT-4o using a standardized prompt with nine questions. Diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated by comparing the model's results with radiologists' assessments (the gold standard). After a two-week interval, the same dataset was re-evaluated to assess intra-observer reliability and consistency. Results: ChatGPT-4o achieved 100% accuracy in identifying imaging modality type. For ICH detection, the model demonstrated a diagnostic accuracy of 68.3%, sensitivity of 79.2%, specificity of 57.5%, PPV of 65.1%, and NPV of 73.4%. It correctly classified 34.0% of hemorrhage types and 7.3% of localizations. All ICH-positive cases were identified as acute phase (100%). In the second evaluation, diagnostic accuracy improved to 73.3%, with a sensitivity of 86.7% and a specificity of 60%. The Cohen's Kappa coefficient for intra-observer agreement in ICH detection indicated moderate agreement (κ = 0.469). Conclusions: ChatGPT-4o shows promise in identifying imaging modalities and ICH presence but demonstrates limitations in localization and hemorrhage type classification. These findings highlight its potential for improvement through targeted training for medical applications.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.