Topologically constrained DNA-mediated one-pot CRISPR assay for rapid detection of viral RNA with single nucleotide resolution.

IF 9.7 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL EBioMedicine Pub Date : 2025-01-24 DOI:10.1016/j.ebiom.2025.105564
Yanan Li, Ru Xu, Fenglei Quan, Yonghua Wu, Yige Wu, Yongyuan Zhang, Yan Liang, Zhenzhong Zhang, Hua Gao, Ruijie Deng, Kaixiang Zhang, Jinghong Li
{"title":"Topologically constrained DNA-mediated one-pot CRISPR assay for rapid detection of viral RNA with single nucleotide resolution.","authors":"Yanan Li, Ru Xu, Fenglei Quan, Yonghua Wu, Yige Wu, Yongyuan Zhang, Yan Liang, Zhenzhong Zhang, Hua Gao, Ruijie Deng, Kaixiang Zhang, Jinghong Li","doi":"10.1016/j.ebiom.2025.105564","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The widespread and evolution of RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the importance of fast identification of virus subtypes, particularly in non-laboratory settings. Rapid and inexpensive at-home testing of viral nucleic acids with single-base resolution remains a challenge.</p><p><strong>Methods: </strong>Topologically constrained DNA ring is engineered as substrates for the trans-cleavage of Cas13a to yield an accelerated post isothermal amplification. The capacity of CRISPR/Cas13a for discriminating single nucleotide variant (SNV) in viral genome is leveraged by designing synthetic mismatches and hairpin structure in CRISPR RNA (crRNA), enabling robust discrimination of different SARS-CoV-2 variants. Via optimisation of CasTDR<sub>3pot</sub> to be one-pot assay, CasTDR<sub>1pot</sub> can detect Omicron and its subvariants, with only a few copies in clinical samples in less than 30 min without pre-amplification.</p><p><strong>Findings: </strong>The detection system boasts high sensitivity (0.1 aM), single-base specificity, and the advantage of a rapid \"sample-to-answer\" process, which takes only 30 min. In the detection of SARS-CoV-2 clinical samples and their variant strains, CasTDR<sub>1pot</sub> has achieved 100% accuracy. Furthermore, the design of a portable signal-reading device facilitates user-friendly result interpretation. For the detection needs of different RNA viruses, the system can be adapted simply by designing the corresponding crRNA.</p><p><strong>Interpretation: </strong>Our study provides a rapid and accurate molecular diagnostic tool for point-of-care testing, epidemiological screening, and the detection of diseases associated with other RNA biomarkers with excellent single nucleotide differentiation, high sensitivity, and simplicity.</p><p><strong>Funding: </strong>National Key Research and Development Program of China (No. 2023YFB3208302), National Natural Science Foundation of China (No. 22377110, 22034004, 82402749, 82073787, 22122409), National Key Research and Development Program of China (No. 2021YFA1200104), Henan Province Fund for Cultivating Advantageous Disciplines (No. 222301420019).</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"112 ","pages":"105564"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2025.105564","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The widespread and evolution of RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the importance of fast identification of virus subtypes, particularly in non-laboratory settings. Rapid and inexpensive at-home testing of viral nucleic acids with single-base resolution remains a challenge.

Methods: Topologically constrained DNA ring is engineered as substrates for the trans-cleavage of Cas13a to yield an accelerated post isothermal amplification. The capacity of CRISPR/Cas13a for discriminating single nucleotide variant (SNV) in viral genome is leveraged by designing synthetic mismatches and hairpin structure in CRISPR RNA (crRNA), enabling robust discrimination of different SARS-CoV-2 variants. Via optimisation of CasTDR3pot to be one-pot assay, CasTDR1pot can detect Omicron and its subvariants, with only a few copies in clinical samples in less than 30 min without pre-amplification.

Findings: The detection system boasts high sensitivity (0.1 aM), single-base specificity, and the advantage of a rapid "sample-to-answer" process, which takes only 30 min. In the detection of SARS-CoV-2 clinical samples and their variant strains, CasTDR1pot has achieved 100% accuracy. Furthermore, the design of a portable signal-reading device facilitates user-friendly result interpretation. For the detection needs of different RNA viruses, the system can be adapted simply by designing the corresponding crRNA.

Interpretation: Our study provides a rapid and accurate molecular diagnostic tool for point-of-care testing, epidemiological screening, and the detection of diseases associated with other RNA biomarkers with excellent single nucleotide differentiation, high sensitivity, and simplicity.

Funding: National Key Research and Development Program of China (No. 2023YFB3208302), National Natural Science Foundation of China (No. 22377110, 22034004, 82402749, 82073787, 22122409), National Key Research and Development Program of China (No. 2021YFA1200104), Henan Province Fund for Cultivating Advantageous Disciplines (No. 222301420019).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EBioMedicine
EBioMedicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍: eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.
期刊最新文献
Evidence for alpha-synuclein aggregation in older individuals with hyposmia: a cross-sectional study. High risk of asthma among early teens is associated with quantitative differences in mite and cat allergen specific IgE and IgG4: a modified Th2 related antibody response revisited. Unraveling the immunological landscape and gut microbiome in sepsis: a comprehensive approach to diagnosis and prognosis. Comparison of autism domains across thirty rare variant genotypes. De Novo exposomic geospatial assembly of chronic disease regions with machine learning & network analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1