Comprehensive analysis of the transcriptome-wide m6A Methylome in sheep testicular development.

IF 3.4 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genomics Pub Date : 2025-01-22 DOI:10.1016/j.ygeno.2025.111005
Binpeng Xi, Zengkui Lu, Rui Zhang, Shengguo Zhao, Jianye Li, Xuejiao An, Yaojing Yue
{"title":"Comprehensive analysis of the transcriptome-wide m6A Methylome in sheep testicular development.","authors":"Binpeng Xi, Zengkui Lu, Rui Zhang, Shengguo Zhao, Jianye Li, Xuejiao An, Yaojing Yue","doi":"10.1016/j.ygeno.2025.111005","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenosine (m6A) modification of RNA is a critical post-transcriptional modification, that dynamically contributes to testicular development and spermatogenesis. Nevertheless, the investigation into the role of m6A in testicular development of sheep remains insufficient. Herein, we conducted a comprehensive analysis of the m6A transcriptome landscape in the testes of F1 hybrid Southdown × Hu sheep across M0 (0 months old, newborn), M3 (3 months old, sexually immature), M6 (6 months old, sexually mature), and Y1 (1 years old, adult). By profiling the m6A signatures across the transcriptome, we observed distinct differences in m6A modification patterns during sheep testicular development. Our cross-analysis of m6A and mRNA expression revealed that the expression of 743 genes and their m6A modification were concurrent. Notably, the combined analysis of the two comparative groups, M0 vs. M6 and M0 vs. Y1, exhibited a positive correlation, with 30 candidate genes each located within the largest protein-protein interaction network. Intriguingly, eight key hub genes (VEGFA, HDAC9, ZBTB40, KDM5B, MTRR, EAPS1, TSSK3, and BMP4) were identified to be associated with the regulation of sheep testicular development and spermatogenesis. These findings contribute to a deeper understanding of the dynamic role of m6A modification in sheep testicular biology. This study to map RNA m6A modification in sheep testes at different ages, providing novel insights into m6A topology and the molecular mechanisms associated with spermatogenesis in Southdown × Hu sheep F1 hybrids and laying the foundation for further investigations of mammalian spermatogenesis.</p>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":" ","pages":"111005"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ygeno.2025.111005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

N6-methyladenosine (m6A) modification of RNA is a critical post-transcriptional modification, that dynamically contributes to testicular development and spermatogenesis. Nevertheless, the investigation into the role of m6A in testicular development of sheep remains insufficient. Herein, we conducted a comprehensive analysis of the m6A transcriptome landscape in the testes of F1 hybrid Southdown × Hu sheep across M0 (0 months old, newborn), M3 (3 months old, sexually immature), M6 (6 months old, sexually mature), and Y1 (1 years old, adult). By profiling the m6A signatures across the transcriptome, we observed distinct differences in m6A modification patterns during sheep testicular development. Our cross-analysis of m6A and mRNA expression revealed that the expression of 743 genes and their m6A modification were concurrent. Notably, the combined analysis of the two comparative groups, M0 vs. M6 and M0 vs. Y1, exhibited a positive correlation, with 30 candidate genes each located within the largest protein-protein interaction network. Intriguingly, eight key hub genes (VEGFA, HDAC9, ZBTB40, KDM5B, MTRR, EAPS1, TSSK3, and BMP4) were identified to be associated with the regulation of sheep testicular development and spermatogenesis. These findings contribute to a deeper understanding of the dynamic role of m6A modification in sheep testicular biology. This study to map RNA m6A modification in sheep testes at different ages, providing novel insights into m6A topology and the molecular mechanisms associated with spermatogenesis in Southdown × Hu sheep F1 hybrids and laying the foundation for further investigations of mammalian spermatogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genomics
Genomics 生物-生物工程与应用微生物
CiteScore
9.60
自引率
2.30%
发文量
260
审稿时长
60 days
期刊介绍: Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation. As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.
期刊最新文献
Integrating ATAC-seq and RNA-seq to reveal the dynamics of chromatin accessibility and gene expression in regulating aril coloration of Taxus mairei. Decoding ferroptosis in alcoholic hepatitis: A bioinformatics approach to hub gene identification. Chromosome-level genome assembly and characterization of Kaixuan 016: A high-oleic peanut variety with improved agronomic traits developed through gamma-radiation-assisted breeding. Multiple omics analysis reveals the regulation of SIRT4 on lipid deposition and metabolism during the differentiation of bovine preadipocytes. CircPIK3C3 inhibits hepatocellular carcinoma progression and lenvatinib resistance by suppressing the Wnt/β-catenin pathway via the miR-452-5p/SOX15 axis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1