Daniela Scutaru, Simone Bergonzoli, Corrado Costa, Simona Violino, Cecilia Costa, Sergio Albertazzi, Vittorio Capano, Marko M Kostić, Antonio Scarfone
{"title":"An AI-Based Digital Scanner for <i>Varroa destructor</i> Detection in Beekeeping.","authors":"Daniela Scutaru, Simone Bergonzoli, Corrado Costa, Simona Violino, Cecilia Costa, Sergio Albertazzi, Vittorio Capano, Marko M Kostić, Antonio Scarfone","doi":"10.3390/insects16010075","DOIUrl":null,"url":null,"abstract":"<p><p>Beekeeping is a crucial agricultural practice that significantly enhances environmental health and food production through effective pollination by honey bees. However, honey bees face numerous threats, including exotic parasites, large-scale transportation, and common agricultural practices that may increase the risk of parasite and pathogen transmission. A major threat is the <i>Varroa destructor</i> mite, which feeds on honey bee fat bodies and transmits viruses, leading to significant colony losses. Detecting the parasite and defining the intervention thresholds for effective treatment is a difficult and time-consuming task; different detection methods exist, but they are mainly based on human eye observations, resulting in low accuracy. This study introduces a digital portable scanner coupled with an AI algorithm (BeeVS) used to detect Varroa mites. The device works through image analysis of a sticky sheet previously placed under the beehive for some days, intercepting the Varroa mites that naturally fall. In this study, the scanner was tested for 17 weeks, receiving sheets from 5 beehives every week, and checking the accuracy, reliability, and speed of the method compared to conventional human visual inspection. The results highlighted the high repeatability of the measurements (R<sup>2</sup> ≥ 0.998) and the high accuracy of the BeeVS device; when at least 10 mites per sheet were present, the device showed a cumulative percentage error below 1%, compared to approximately 20% for human visual observation. Given its repeatability and reliability, the device can be considered a valid tool for beekeepers and scientists, offering the opportunity to monitor many beehives in a short time, unlike visual counting, which is done on a sample basis.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16010075","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Beekeeping is a crucial agricultural practice that significantly enhances environmental health and food production through effective pollination by honey bees. However, honey bees face numerous threats, including exotic parasites, large-scale transportation, and common agricultural practices that may increase the risk of parasite and pathogen transmission. A major threat is the Varroa destructor mite, which feeds on honey bee fat bodies and transmits viruses, leading to significant colony losses. Detecting the parasite and defining the intervention thresholds for effective treatment is a difficult and time-consuming task; different detection methods exist, but they are mainly based on human eye observations, resulting in low accuracy. This study introduces a digital portable scanner coupled with an AI algorithm (BeeVS) used to detect Varroa mites. The device works through image analysis of a sticky sheet previously placed under the beehive for some days, intercepting the Varroa mites that naturally fall. In this study, the scanner was tested for 17 weeks, receiving sheets from 5 beehives every week, and checking the accuracy, reliability, and speed of the method compared to conventional human visual inspection. The results highlighted the high repeatability of the measurements (R2 ≥ 0.998) and the high accuracy of the BeeVS device; when at least 10 mites per sheet were present, the device showed a cumulative percentage error below 1%, compared to approximately 20% for human visual observation. Given its repeatability and reliability, the device can be considered a valid tool for beekeepers and scientists, offering the opportunity to monitor many beehives in a short time, unlike visual counting, which is done on a sample basis.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.