A multifunctional sensor for cell traction force, matrix remodeling and biomechanical assays in self-assembled 3D tissues in vitro.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Protocols Pub Date : 2025-01-24 DOI:10.1038/s41596-024-01106-8
Bashar Emon, Md Saddam Hossain Joy, William C Drennan, M Taher A Saif
{"title":"A multifunctional sensor for cell traction force, matrix remodeling and biomechanical assays in self-assembled 3D tissues in vitro.","authors":"Bashar Emon, Md Saddam Hossain Joy, William C Drennan, M Taher A Saif","doi":"10.1038/s41596-024-01106-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-matrix interactions, mediated by cellular force and matrix remodeling, result in dynamic reciprocity that drives numerous biological processes and disease progression. Currently, there is no available method for directly quantifying cell traction force and matrix remodeling in three-dimensional matrices as a function of time. To address this long-standing need, we developed a high-resolution microfabricated device that enables longitudinal measurement of cell force, matrix stiffness and the application of mechanical stimulation (tension or compression) to cells. Here a specimen comprising of cells and matrix self-assembles and self-integrates with the sensor. With primary fibroblasts, cancer cells and neurons we have demonstrated the feasibility of the sensor by measuring single or multiple cell force with a resolution of 1 nN and changes in tissue stiffness due to matrix remodeling by the cells. The sensor can also potentially be translated into a high-throughput system for clinical assays such as patient-specific drug and phenotypic screening. We present the detailed protocol for manufacturing the sensors, preparing experimental setup, developing assays with different tissues and for imaging and analyzing the data. Apart from microfabrication of the molds in a cleanroom (one time operation), this protocol does not require any specialized skillset and can be completed within 4-5 h.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01106-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-matrix interactions, mediated by cellular force and matrix remodeling, result in dynamic reciprocity that drives numerous biological processes and disease progression. Currently, there is no available method for directly quantifying cell traction force and matrix remodeling in three-dimensional matrices as a function of time. To address this long-standing need, we developed a high-resolution microfabricated device that enables longitudinal measurement of cell force, matrix stiffness and the application of mechanical stimulation (tension or compression) to cells. Here a specimen comprising of cells and matrix self-assembles and self-integrates with the sensor. With primary fibroblasts, cancer cells and neurons we have demonstrated the feasibility of the sensor by measuring single or multiple cell force with a resolution of 1 nN and changes in tissue stiffness due to matrix remodeling by the cells. The sensor can also potentially be translated into a high-throughput system for clinical assays such as patient-specific drug and phenotypic screening. We present the detailed protocol for manufacturing the sensors, preparing experimental setup, developing assays with different tissues and for imaging and analyzing the data. Apart from microfabrication of the molds in a cleanroom (one time operation), this protocol does not require any specialized skillset and can be completed within 4-5 h.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Impact of LS Mutation on Pharmacokinetics of Preventive HIV Broadly Neutralizing Monoclonal Antibodies: A Cross-Protocol Analysis of 16 Clinical Trials in People without HIV
IF 5.4 3区 医学PharmaceuticsPub Date : 2024-04-27 DOI: 10.3390/pharmaceutics16050594
Bryan T. Mayer, Lily Zhang, Allan C. deCamp, Chenchen Yu, Alicia Sato, Heather Angier, Kelly E. Seaton, Nicole Yates, Julie E. Ledgerwood, Kenneth Mayer, Marina Caskey, Michel Nussenzweig, Kathryn Stephenson, Boris Julg, Dan H. Barouch, Magdalena E. Sobieszczyk, Srilatha Edupuganti, Colleen F. Kelley, M. Juliana McElrath, Huub C. Gelderblom, Michael Pensiero, Adrian McDermott, Lucio Gama, Richard A. Koup, Peter B. Gilbert, Myron S. Cohen, Lawrence Corey, Ollivier Hyrien, Georgia D. Tomaras, Yunda Huang
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
期刊最新文献
A detailed guide to assessing genome assembly based on long-read sequencing data using Inspector. Cyborg organoids integrated with stretchable nanoelectronics can be functionally mapped during development. Advancing cell-cell communication analysis from single-cell genomics data. CellPhoneDB v5: inferring cell-cell communication from single-cell multiomics data. DARLIN mouse for in vivo lineage tracing at high efficiency and clonal diversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1