Mapping the aging brain: Insights into microstructural changes from free water-corrected fractional anisotropy

IF 2.5 4区 医学 Q3 NEUROSCIENCES Neuroscience Letters Pub Date : 2025-01-23 DOI:10.1016/j.neulet.2025.138120
Abigail E. Bower , Jae Woo Chung , Roxana G. Burciu
{"title":"Mapping the aging brain: Insights into microstructural changes from free water-corrected fractional anisotropy","authors":"Abigail E. Bower ,&nbsp;Jae Woo Chung ,&nbsp;Roxana G. Burciu","doi":"10.1016/j.neulet.2025.138120","DOIUrl":null,"url":null,"abstract":"<div><div>Aging has a significant impact on brain structure, demonstrated by numerous MRI studies using diffusion tensor imaging (DTI). While these studies reveal changes in fractional anisotropy (FA) across different brain regions, they tend to focus on white matter tracts and cognitive regions, often overlooking gray matter and motor areas. Additionally, traditional DTI metrics can be affected by partial volume effects. To address these limitations and gain a better understanding of microstructural changes across the whole brain, we utilized free water-corrected fractional anisotropy (FAt) to examine aging-related microstructural changes in a group of 20 young adults (YA) and 24 older adults (OA). A voxel-wise analysis revealed that YA had higher FAt values predominantly in white matter tracts associated with both motor and non-motor functions. In contrast, OA showed higher levels of FAt primarily in gray matter regions, including both subcortical and cortical motor areas, and occipital and temporal cortices. Complementing these cross-sectional results, correlation analyses within the OA group showed that many of these changes are further exacerbated with increasing age, underscoring the progressive nature of these microstructural alterations. In summary, the distinct patterns of FAt changes in gray versus white matter with aging suggest different underlying mechanisms. While white matter FAt values decrease, likely due to axonal degeneration, the increase in gray matter FAt could reflect either compensatory processes or pathological changes. Including behavioral data in future studies will be crucial for understanding the functional implications of these microstructural gray matter changes and their effects on cognitive and motor functions.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"849 ","pages":"Article 138120"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000084","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aging has a significant impact on brain structure, demonstrated by numerous MRI studies using diffusion tensor imaging (DTI). While these studies reveal changes in fractional anisotropy (FA) across different brain regions, they tend to focus on white matter tracts and cognitive regions, often overlooking gray matter and motor areas. Additionally, traditional DTI metrics can be affected by partial volume effects. To address these limitations and gain a better understanding of microstructural changes across the whole brain, we utilized free water-corrected fractional anisotropy (FAt) to examine aging-related microstructural changes in a group of 20 young adults (YA) and 24 older adults (OA). A voxel-wise analysis revealed that YA had higher FAt values predominantly in white matter tracts associated with both motor and non-motor functions. In contrast, OA showed higher levels of FAt primarily in gray matter regions, including both subcortical and cortical motor areas, and occipital and temporal cortices. Complementing these cross-sectional results, correlation analyses within the OA group showed that many of these changes are further exacerbated with increasing age, underscoring the progressive nature of these microstructural alterations. In summary, the distinct patterns of FAt changes in gray versus white matter with aging suggest different underlying mechanisms. While white matter FAt values decrease, likely due to axonal degeneration, the increase in gray matter FAt could reflect either compensatory processes or pathological changes. Including behavioral data in future studies will be crucial for understanding the functional implications of these microstructural gray matter changes and their effects on cognitive and motor functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience Letters
Neuroscience Letters 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
408
审稿时长
50 days
期刊介绍: Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.
期刊最新文献
Inflammatory pain modifies reward preferences from larger delayed to smaller immediate rewards in male rats Delayed treatment with TGF-β1 associated neuroprotection in trimethyltin-induced hippocampal neurodegeneration MiR-222-3p regulates methamphetamine-induced behavioral sensitization through PP2A–AKT signaling pathway in the dorsal striatum of male mice Role of pentosidine accumulation in stress-induced social behavioral deficits Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1